Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 131(1)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175910

RESUMO

Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Adesões Focais/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais
2.
Nucleic Acids Res ; 44(18): 8786-8798, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27407105

RESUMO

In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Origem de Replicação , Fase S
3.
Wellcome Open Res ; 4: 133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31656861

RESUMO

Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.

4.
Sci Signal ; 11(531)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789297

RESUMO

Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain.


Assuntos
Caseína Quinase I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Neoplasias/química , Domínios Proteicos , Caseína Quinase I/química , Caseína Quinase I/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA