Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Asian Nat Prod Res ; 20(5): 431-438, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29589484

RESUMO

Three new secoiridoids, nuezhenelenoliciside (1), isojaslanceoside B (2), 6'-O-trans-cinnamoyl-secologanoside (3), were isolated from the dried fruits of Ligustrum lucidum. Their structures were elucidated by comprehensive spectroscopic analysis. Among them, 1 featured a rare rearrangement product of secoiridoid, which underwent the cleavage of chemical bond between C-1 and O-2, and the reformation of a new iridoid ring between C-8 and O-2. In addition, all compounds were tested for their osteogenic activity on pre-osteoblastic MC3T3-E1 cells. As a result, 1 and 3 exhibited potent effects on promoting cell proliferation of pre-osteoblast cells.


Assuntos
Iridoides/química , Iridoides/farmacologia , Ligustrum/química , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
2.
J Ethnopharmacol ; 279: 114396, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34246738

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The overall therapeutic effect of traditional Chinese medicine formulae (TCMF) was achieved by the interactions of multiple components with multiple targets. However, current pharmacology research strategies have struggled to identify effective substance groups and encountered challenges in elucidating the underlying mechanisms of TCMF. AIM: In this study, a comprehensive strategy was proposed and applied to elucidate the interactions of the multiple components that underlie the functions of the famous TCMF: Xian-Ling-Gu-Bao (XLGB) capsule on bone metabolism in vivo and to elucidate the molecular mechanisms underlying the effects of XLGB on bone cells, especially on osteoblasts. METHODS: The efficacy of XLGB in the protection against bones loss in ovariectomized (OVX) rats was confirmed by Micro-CT analysis. The anti-osteoporosis mechanism involved in the systemic regulatory actions of XLGB was elucidated by transcriptome sequencing analysis on bone marrow mesenchymal stem cells isolated from OVX rats. Moreover, the components absorbed in XLGB-treated plasma were characterized by mass spectrometry analysis, and subsequently, a standardized preparation process of drug-containing plasma was established. The synergistic osteogenic effect of the multiple components in plasma was investigated by a combination and then knockout of components using pre-osteoblast MC3T3-E1 cells. In order to decipher the underlying mechanism of XLGB, the targets of the absorbed components on bone were predicted by target prediction and network pharmacology analysis, then several interactions were validated by biochemical and cell-based assay. RESULTS: A total of 18 genes, including HDC, CXCL1/2, TNF, IL6 and Il1b, were newly found to be the major target genes regulated by XLGB. Interestingly, we found that a combination of the three absorbed components, i.e. MSP, rather than their single form at the same concentration, stimulated the formation of calcified nodules in MC3T3-E1 cells, suggesting a synergistic effect of these components. Besides, target prediction and experimental validation confirmed the binding affinity of corylin and icaritin for estrogen receptor α and ß, the inhibitory activity of isobavachin and isobavachalcone on glycogen synthase kinase-3ß, and the inhibitory activity of isobavachalcone on cathepsin K. The cell-based assay further confirmed the result of the biochemical assay. A network that integrated absorbed components of XLGB-targets-perturbation genes-pathways against osteoporosis was established. CONCLUSION: Our current study provides a new systemic strategy for discovering active ingredient groups of TCM formulae and understanding their underlying mechanisms.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Osteoporose/prevenção & controle , Células 3T3 , Administração Oral , Animais , Densidade Óssea/efeitos dos fármacos , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Ovariectomia , Ligante RANK/farmacologia , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células-Tronco
3.
Phytomedicine ; 68: 153146, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028183

RESUMO

BACKGROUND: Dipsaci Radix has been clinically used for thousands of years in China for strengthening muscles and bones. Sweroside is the major active iridoid glycoside isolated from Dipsaci Radix. It has been reported that sweroside can promote alkaline phosphatase (ALP) activity in both the human osteosarcoma cell line MG-63 and rat osteoblasts. However, the underlying mechanism involved in these osteoblastic processes is poorly understood. PURPOSE: This study aimed to characterize the bone protective effects of sweroside and to investigate the signaling pathway that is involved in its actions in MC3T3-E1 cells. METHODS: Cell proliferation, differentiation and mineralization were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, ALP test and Alizarin Red S staining, respectively. The concentration of sweroside in intracellular and extracellular fluids was determined by ultra-performance liquid chromatography coupled to triple quadrupole xevo-mass spectrometry (UPLC/TQ-XS-MS). Proteins associated with the osteoblastic signaling pathway were analysed by western blot and immunofluorescence methods. RESULTS: Sweroside did not obviously affect the proliferation but significantly promoted the ALP activity and mineralization of MC3T3-E1 cells. The maximal absorption amount 0.465 ng/ml (1.3 × 10-9 M) of sweroside was extremely lower than the tested concentration of 358.340 ng/ml (10-6 M), indicating an extremely low absorption rate by MC3T3-E1 cells. Moreover, the ALP activity, the protein expression of ER-α and G protein-coupled receptor 30 (GPR30) induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. In addition, sweroside also activated the phosphorylation of p38 kinase (p-p38), while the phosphorylation effects together with ALP and mineralization activities were completely blocked by a p38 antagonist, SB203580. Additionally, the phosphorylation of p38 induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. CONCLUSIONS: The present study indicated that sweroside, as a potential agent in treatment of osteoporosis, might exert beneficial effects on MC3T3-E1 cells by interaction with the membrane estrogen receptor-α and GPR30 that then activates the p38 signaling pathway. This is the first study to report the specific mechanism of the effects of sweroside on osteoblastic differentiation and mineralization of MC3T3-E1 cells.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Glucosídeos Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos
4.
J Pharm Biomed Anal ; 177: 112836, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31473481

RESUMO

Xian-Ling-Gu-Bao capsule (XLGB) is an effective traditional Chinese medicine prescription (TCMP) that is used for the prevention and treatment of osteoporosis in China. A rapid, simple, efficient and stable method based on UPLC-MS/MS technology was developed for simultaneous determination of multiple components of XLGB in rat plasma. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI). For twenty-one selected quantitative prototypes, all calibration curves showed favourable linearity (r>0.9932) in linear ranges. The lower limits of quantification (LLOQs) were 2 ng/mL for psoralen (PL), 2.5 ng/mL for asperosaponin VI (AS), 1 ng/mL for isopsoralen (IPS) and sweroside (SW), 0.5 ng/mL for magnoflorine (MA), bavachinin (BVN), tanshinone IIA (TA), timosaponin BII (TBII) and icaritin (ICT), 0.1 ng/mL for epimedin B (EB) and epimedin C (EC), 0.05 ng/mL for icariin (IC), isobavachalcone (IBC), psoralidin (PD), bavachin (BV), bavachalcone (BC), epimedin A (EA) and isobavachin (IBV), 0.02 ng/mL for neobavaisoflavone (NEO) and icariside I (ICI) and 0.01 ng/mL for icariside II (ICII). The intra-day and inter-day (low, medium, high) precision (relative standard deviation) for all analytes was less than 8.63%, and the accuracies (as relative error) were in the range of -12.45% to 8.91%. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The validated method was successfully applied to the pharmacokinetics (PK) studies of the twenty-one prototypes at pharmacodynamic doses (0.3 and 1 g/kg/day). In addition, dynamic profiles of 28 metabolites (phase II conjugates: 23 glucuronide conjugates, 2 sulfate conjugates and 3 glucuronide or sulfate conjugates) were also monitored by their area/IS area-time curves. As a result, coumarins, prenylated flavonoids from Psoraleae Fructus, alkaloids and prenylated flavonol glycosides from Epimedii Herba, and iridoid glycosides, triterpenoid saponins from Dipsaci Asperoidis Radix were considered to be the key effective substances of XLGB due to their high exposure and appropriate pharmacokinetic features. This is the first report to reveal pharmacodynamic ingredients by a reversed pharmacodynamic (PD) - pharmacokinetics (PK) study.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Aporfinas/administração & dosagem , Aporfinas/sangue , Aporfinas/farmacocinética , Cápsulas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/análise , Feminino , Ficusina/administração & dosagem , Ficusina/sangue , Ficusina/farmacocinética , Flavonoides/administração & dosagem , Flavonoides/sangue , Flavonoides/farmacocinética , Furocumarinas/administração & dosagem , Furocumarinas/sangue , Furocumarinas/farmacocinética , Glucosídeos Iridoides/administração & dosagem , Glucosídeos Iridoides/sangue , Glucosídeos Iridoides/farmacocinética , Modelos Animais , Ratos , Saponinas/administração & dosagem , Saponinas/sangue , Saponinas/farmacocinética
5.
Front Pharmacol ; 9: 932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186170

RESUMO

The lignan-rich fraction (SWR) of Sambucus Williamsii Ramulus, a folk herbal medicine in China for treatment of bone diseases, has previously reported to exert protective effects on bone without exerting uterotrophic effects in ovariectomized (OVX) mice. The aim of the present study was to identify the potential metabolites and the associated metabolic pathways that contribute to the beneficial effects of SWR on bone in vivo. Aged female Sprague Dawley rats (9 months old) were either sham-operated or ovariectomized for 12 weeks, before receiving treatment for another 12 weeks with the following treatment groups (n = 12 each): vehicle (Sham), vehicle (OVX), Premarin (130 µg/kg) or low (57 mg/kg), medium (114 mg/kg), and high (228 mg/kg) doses of SWR. The results showed that SWRH significantly suppressed bone loss, improved bone micro-architecture and increased bone strength on tibia without stimulating uterus weight gain in OVX rats. Premarin exerted similar bone protective effects as SWRH but elicited uterotrophic effects in OVX rats. The metabolic profiles of serum samples were analyzed by using ultra-performance liquid chromatography quadrupole time-of flight mass spectrometry and gas chromatography time-of flight mass spectrometry, and the metabolites that were significantly altered were identified by multivariate statistical analysis. Our study indicated that SWRH effectively restored the changes of 26 metabolites induced by estrogen-deficiency in OVX rats, which related to lipids, amino acids, tryptophan metabolisms, and anti-oxidative system. A subsequent validation showed that the serum level of superoxide dismutase and catalase were indeed up-regulated, while the serotonin level in a tryptophan hydroxylase 1 (TPH1) high expressing cells (rats RBL-2H3 cells) was down regulated after treatment with SWR. The results also suggested that the gut-microbiota may play an important role on the bone protective effects of SWR. The current study provides insight for understanding the unique mechanism of actions of SWR that might be involved in achieving bone protective effects in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA