Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(13): 2394-2400, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37115501

RESUMO

PURPOSE: Devimistat (CPI-613) is a novel inhibitor of tumoral mitochondrial metabolism. We investigated the effect of devimistat in vitro and in a phase Ib clinical trial in patients with advanced biliary tract cancer (BTC). PATIENTS AND METHODS: Cell viability assays of devimistat ± gemcitabine and cisplatin (GC) were performed and the effect of devimistat on mitochondrial respiration via oxygen consumption rate (OCR) was evaluated. A phase Ib/II trial was initiated in patients with untreated advanced BTC. In phase Ib, devimistat was infused over 2 hours in combination with GC on days 1 and 8 every 21 days with a primary objective to determine the recommended phase II dose (RP2D). Secondary objectives included safety, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS: In vitro, devimistat with GC had a synergistic effect on two cell lines. Devimistat significantly decreased OCR at higher doses and in arms with divided dosing. In the phase Ib trial, 20 patients received a median of nine cycles (range, 3-19). One DLT was observed, and the RP2D of devimistat was determined to be 2,000 mg/m2 in combination with GC. Most common grade 3 toxicities included neutropenia (n = 11, 55%), anemia (n = 4, 20%), and infection (n = 3, 15%). There were no grade 4 toxicities. After a median follow-up of 15.6 months, ORR was 45% and median PFS was 10 months (95% confidence interval, 7.1-14.9). Median OS is not yet estimable. CONCLUSIONS: Devimistat in combination with GC is well tolerated and has an acceptable safety profile in patients with untreated advanced BTC.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Neutropenia , Humanos , Gencitabina , Cisplatino , Intervalo Livre de Doença , Desoxicitidina , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/etiologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neutropenia/induzido quimicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
2.
iScience ; 26(2): 106020, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824283

RESUMO

Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.

3.
Trends Pharmacol Sci ; 43(5): 378-391, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272862

RESUMO

The mutational and phenotypic landscape of tumors is dynamic, requiring constant monitoring of cancer patients to provide the most up-to-date and effective care. Circulating tumor cells (CTCs) obtained via liquid biopsy can provide tumor DNA, RNA, and protein information that can aid in the diagnosis, prognosis, and treatment of patients. There have been many recent studies and advances in using CTC enumeration, characterization, and expansion to provide personalized cancer treatment, validating the benefit of using CTCs as a biomarker in standard of care procedures. In this paper, we aim to summarize these advances, their limitations, and suggest future areas of study necessary to bring CTC analysis to clinics.


Assuntos
Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Humanos , Biópsia Líquida/métodos , Mutação , Células Neoplásicas Circulantes/patologia , Medicina de Precisão/métodos , Prognóstico
4.
Front Cell Dev Biol ; 10: 781762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111343

RESUMO

The regulatory interaction between two typical epithelial ion channels, cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC), for epithelial homeostasis has been noted, although the underlying mechanisms remain unclear. Here, we report that in a human endometrial epithelial cell line (ISK), shRNA-based stable knockdown of ENaC produced a biphasic effect: a low (∼23%) degree of ENaC knockdown resulted in significant increases in CFTR mRNA and protein levels, CFTR-mediated Cl- transport activity as well as intracellular cAMP concentration, while a higher degree (∼50%) of ENaC knockdown did not further increase but restored CFTR expression and cAMP levels. The basal intracellular Ca2+ level of ISK cells was lowered by ENaC knockdown or inhibition in a degree-dependent manner. BAPTA-AM, an intracellular Ca2+ chelator that lowers free Ca2+ concentration, elevated cAMP level and CFTR mRNA expression at a low (5 µM) but not a high (50 µM) dose, mimicking the biphasic effect of ENaC knockdown. Moreover, KH-7, a selective inhibitor of soluble adenylyl cyclase (sAC), abolished the CFTR upregulation induced by low-degree ENaC knockdown or Ca2+ chelation, suggesting the involvement of sAC-driven cAMP production in the positive regulation. A luciferase reporter to indicate CFTR transcription revealed that all tested degrees of ENaC knockdown/inhibition stimulated CFTR transcription in ISK cells, suggesting that the negative regulation on CFTR expression by the high-degree ENaC deficiency might occur at post-transcription stages. Additionally, similar biphasic effect of ENaC knockdown on CFTR expression was observed in a human bronchial epithelial cell line. Taken together, these results have revealed a previously unidentified biphasic regulatory role of ENaC in tuning CFTR expression involving Ca2+-modulated cAMP production, which may provide an efficient mechanism for dynamics and plasticity of the epithelial tissues in various physiological or pathological contexts.

5.
Nat Metab ; 4(9): 1119-1137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131208

RESUMO

Recurrent loss-of-function deletions cause frequent inactivation of tumour suppressor genes but often also involve the collateral deletion of essential genes in chromosomal proximity, engendering dependence on paralogues that maintain similar function. Although these paralogues are attractive anticancer targets, no methodology exists to uncover such collateral lethal genes. Here we report a framework for collateral lethal gene identification via metabolic fluxes, CLIM, and use it to reveal MTHFD2 as a collateral lethal gene in UQCR11-deleted ovarian tumours. We show that MTHFD2 has a non-canonical oxidative function to provide mitochondrial NAD+, and demonstrate the regulation of systemic metabolic activity by the paralogue metabolic pathway maintaining metabolic flux compensation. This UQCR11-MTHFD2 collateral lethality is confirmed in vivo, with MTHFD2 inhibition leading to complete remission of UQCR11-deleted ovarian tumours. Using CLIM's machine learning and genome-scale metabolic flux analysis, we elucidate the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of stromal compositions of tumours.


Assuntos
Aminoidrolases , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Enzimas Multifuncionais , Neoplasias Ovarianas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Feminino , Humanos , Hidrolases , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , NAD/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA