Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(5): e202212335, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36380642

RESUMO

Fine-tuning single-atom catalysts (SACs) to surpass their activity limit remains challenging at their atomic scale. Herein, we exploit p-type semiconducting character of SACs having a metal center coordinated to nitrogen donors (MeNx ) and rectify their local charge density by an n-type semiconductor support. With iron phthalocyanine (FePc) as a model SAC, introducing an n-type gallium monosulfide that features a low work function generates a space-charged region across the junction interface, and causes distortion of the FeN4 moiety and spin-state transition in the FeII center. This catalyst shows an over two-fold higher specific oxygen-reduction activity than that of pristine FePc. We further employ three other n-type metal chalcogenides of varying work function as supports, and discover a linear correlation between the activities of the supported FeN4 and the rectification degrees, which clearly indicates that SACs can be continuously tuned by this rectification strategy.

2.
J Am Chem Soc ; 144(34): 15529-15538, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943197

RESUMO

Anchoring platinum catalysts on appropriate supports, e.g., MXenes, is a feasible pathway to achieve a desirable anode for direct methanol fuel cells. The authentic performance of Pt is often hindered by the occupancy and poisoning of active sites, weak interaction between Pt and supports, and the dissolution of Pt. Herein, we construct three-dimensional (3D) crumpled Ti3C2Tx MXene balls with abundant Ti vacancies for Pt confinement via a spray-drying process. The as-prepared Pt clusters/Ti3C2Tx (Ptc/Ti3C2Tx) show enhanced electrocatalytic methanol oxidation reaction (MOR) activity, including a relatively low overpotential, high tolerance to CO poisoning, and ultrahigh stability. Specifically, it achieves a high mass activity of up to 7.32 A mgPt-1, which is the highest value reported to date in Pt-based electrocatalysts, and 42% of the current density is retained on Ptc/Ti3C2Tx even after the 3000 min operative time. In situ spectroscopy and theoretical calculations reveal that an electric field-induced repulsion on the Ptc/Ti3C2Tx interface accelerates the combination of OH- and CO adsorption intermediates (COads) in kinetics and thermodynamics. Besides, this Ptc/Ti3C2Tx also efficiently electrocatalyze ethanol, ethylene glycol, and glycerol oxidation reactions with comparable activity and stability to commercial Pt/C.

3.
Small ; 18(14): e2107141, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182019

RESUMO

Transition metal-based nitrogen-doped carbon (M-Nx -C) is considered as a promising catalyst for the oxygen reduction reaction (ORR) in clean energy storage and conversion devices. Herein, ZnCo dual-atomic sites are incorporated in hierarchical N-doped carbon (HNC), with 1D nanotubes wrapped in 2D nanosheets structure (termed as 1D@2D ZnCo-HNC), via a one-step bio-inspired pyrolysis. The feeding ratio of Zn to Co precursor and pyrolytic temperature are critically modulated to achieve well-defined morphologies of the products, endowing them with the integrated merits of nanotubes and nanosheets as efficient ORR catalysts. Benefiting from the particular structure and electronic regulation of Zn on Co, the ZnCo-Nx dual-atomic system exhibits excellent ORR catalytic characteristics with an onset potential of 1.05 V and a half-wave potential of 0.82 V. Density functional theory calculations further explain the regulating role of Zn, such that the adjusted Co in ZnCo-Nx sites significantly reduces the energy cost to ultimately facilitate the ORR. Moreover, the Zn-air battery assembled with ZnCo-HNC is capable of delivering the maximum power density of 123.7 mW cm-2 and robust stability for 110 h (330 cycles). This method provides a promising strategy for fabricating efficient transition metal-based carbon catalysts for green energy devices.

4.
Nano Lett ; 21(11): 4845-4852, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038135

RESUMO

Precise manipulation of the interactions between different components represents the frontier of heterostructured electrocatalysts and is crucial to understanding the structure-function relationship. Current studies, however, are quite limited. Here, we report targeted modulation of the atomic-level interface chemistry of Pt/NiO heterostructure via an annealing treatment, which results in substantially enhanced hydrogen electrocatalysis kinetics in alkaline media. Specifically, the optimized Pt/NiO heterostructure delivers by far the highest specific exchange current density of 8.1 mA cmPt-2 for hydrogen oxidation reaction. X-ray spectroscopy results suggest Pt-Ni interfacial bonds are formed after annealing, inducing more significant electron transfer from NiO to Pt. Also, the regulated interface chemistry, as proven by theoretical calculations, optimizes the binding behaviors of hydrogen and hydroxyl species. These findings emphasize the importance of interface engineering at the atomic level and inspire further explorations of heterostructured electrocatalysts.

5.
Phys Chem Chem Phys ; 20(43): 27375-27384, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30357169

RESUMO

We have developed a new composite model chemistry method called WMS (Wuhan-Minnesota scaling method) with three characteristics: (1) a composite scheme to approximate the complete configuration interaction valence energy with the affordability condition of requiring no calculation more expensive than CCSD(T)/jul-cc-pV(T+d)Z, (2) low-cost methods for the inner-shell correlation contribution and scalar relativistic correction, and (3) accuracy comparable to methods with post-CCSD(T) components. The new method is shown to be accurate for the W4-17 database of 200 atomization energies with an average mean unsigned error (averaged with equal weight over strongly correlated and weakly correlated subsets of the data) of 0.45 kcal mol-1, and the performance/cost ratio of these results compares very favorably to previously available methods. We also assess the WMS method against the DBH24-W4 database of diverse barrier heights and the energetics of the reactions of three strongly correlated Criegee intermediates with water. These results demonstrate that higher-order correlation contributions necessary to obtain high accuracy for molecular thermochemistry may be successfully extrapolated from the lower-order components of CCSD(T) calculations, and chemical accuracy can now be obtained for larger and more complex molecules and reactions.

6.
Adv Mater ; 35(9): e2208821, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484270

RESUMO

The slow hydrogen oxidation reaction (HOR) kinetics under alkaline conditions remain a critical challenge for the practical application of alkaline exchange membrane fuel cells. Herein, Ru/RuO2 in-plane heterostructures are designed with abundant active Ru-RuO2 interface domains as efficient electrocatalysts for the HOR in alkaline media. The experimental and theoretical results demonstrate that interfacial Ru and RuO2 domains at Ru-RuO2 interfaces are the optimal H and OH adsorption sites, respectively, endowing the well-defined Ru(100)/RuO2 (200) interface as the preferential region for fast alkaline hydrogen electrocatalysis. More importantly, the metallic Ru domains become electron deficient due to the strong interaction with RuO2 domains and show substantially improved inoxidizability, which is vital to maintain durable HOR electrocatalytic activity. The optimal Ru/RuO2 heterostructured electrocatalyst exhibits impressive alkaline HOR activity with an exchange current density of 8.86 mA cm-2 and decent durability. The exceptional electrocatalytic performance of Ru/RuO2 in-plane heterostructure can be attributed to the robust and multifunctional Ru-RuO2 interfaces endowed by the unique metal-metal oxide domains.

7.
Nat Commun ; 14(1): 4670, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537180

RESUMO

Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm-2 (200 mA cell current).

8.
ACS Appl Mater Interfaces ; 14(4): 5384-5394, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044767

RESUMO

Photocatalytic nitrogen reduction reaction (NRR) is becoming a promising route for producing green and sustainable ammonia under ambient conditions. However, the development of highly efficient photocatalysts for NRR still remains a grand challenge as a result of the sluggish activation of inert N2, the competitive hydrogen evolution reaction (HER), and inadequate photogenerated external potential, which usually cause extremely poor NRR performance and low light utilization efficiency. Herein, on the basis of density functional theory (DFT) computations, we rationally designed a series of two-dimensional (2D) π-d conjugated metal-B3N3 (M3B6N6S12) semiconductors. Using the electron "σ acceptance-π* backdonation" process, Mo3B6N6S12 and Nb3B6N6S12 can efficiently activate and reduce N2 to ammonia with a rather low overpotential of 0.07 and 0.21 V, respectively. Importantly, a high photogenerated external potential enables spontaneous NRR on Mo3B6N6S12 and Nb3B6N6S12 under visible/infrared light irradiation, contributing to the extraordinary photoactivity of Mo3B6N6S12 and Nb3B6N6S12 as promising solar light-driven N2 fixation catalysts. Meanwhile, the competing HER is effectively restrained. For the first time, we rationally propose a series of M3B6N6S12 semiconductors as promising metal-based photocatalysts for N2 reduction with extraordinary photoactivity and a high photogenerated external potential. This work paves a new path for the rational designing of 2D metal-based NRR photocatalysts with high activity, good selectivity, and high stability.

9.
Nat Commun ; 13(1): 5894, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202856

RESUMO

Overcoming the sluggish kinetics of alkaline hydrogen oxidation reaction (HOR) is challenging but is of critical importance for practical anion exchange membrane fuel cells. Herein, abundant and efficient interfacial active sites are created on ruthenium (Ru) nanoparticles by anchoring atomically isolated chromium coordinated with hydroxyl clusters (Cr1(OH)x) for accelerated alkaline HOR. This catalyst system delivers 50-fold enhanced HOR activity with excellent durability and CO anti-poisoning ability via switching the active sites from Ru surface to Cr1(OH)x-Ru interface. Fundamentally different from the conventional mechanism merely focusing on surface metal sites, the isolated Cr1(OH)x could provide unique oxygen species for accelerating hydrogen or CO spillover from Ru to Cr1(OH)x. Furthermore, the original oxygen species from Cr1(OH)x are confirmed to participate in hydrogen oxidation and H2O formation. The incorporation of such atomically isolated metal hydroxide clusters in heterostructured catalysts opens up new opportunities for rationally designing advanced electrocatalysts for HOR and other complex electrochemical reactions. This work also highlights the importance of size effect of co-catalysts, which should also be paid substantial attention to in the catalysis field.

10.
Adv Mater ; 33(43): e2105400, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545978

RESUMO

Electrocatalysts with high activity and long-term stability for the hydrogen oxidation reaction (HOR) under alkaline conditions is still a major challenge for anion exchange membrane fuel cells (AEMFCs). Herein, a heterostructured Ir@Pd electrocatalyst with ultrasmall Ir nanoclusters (NCs) epitaxially confined on Pd nanosheets (NSs) for catalyzing the sluggish alkaline HOR is reported. Apparent charge redistribution occurs across the heterointerface, and both experimental and theoretical results suggest that the electrons transfer from Pd to Ir, which consequently greatly weakens the hydrogen binding on Pd. More interestingly, the interfacial epitaxy results in the formation of Ir/IrO2 Janus nanostructures, where the partially oxidized Ir species away from the interface further optimize the hydroxyl adsorption behavior. The unique Ir@Pd heterostructure eventually shows an optimal balance between hydrogen and hydroxyl adsorption, and hence exhibits impressive HOR activity with an exchange current density of up to 7.18 mA cm-2 in 0.1 m KOH solution. In addition, the Ir@Pd electrocatalyst exhibits negligible activity degradation owing to the confinement effect of the unique epitaxial interface.

11.
ACS Appl Mater Interfaces ; 12(2): 2400-2406, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31868343

RESUMO

Efficient catalysis of the methanol oxidation reaction (MOR) greatly determines the widespread implementation of direct methanol fuel cells. Exploring a suitable support for noble metal catalysts with regard to decreasing the mass loading and optimizing the MOR activity remains a key challenge. Herein, we achieve an over 60% activity enhancement of a palladium (Pd) catalyst by introducing a two-dimensional Ti3C2Tx MXene as the support compared to a commercial Pd/C catalyst. Not only are more catalytically active Pd sites exposed on the Pd/MXene catalyst while maintaining a low mass loading, but the introduction of the MXene support also significantly alters the surface electronic structure of Pd. Specifically, spectroscopy and density functional theory (DFT) computations indicate that sufficiently electronegative terminations of the Ti3C2Tx MXene surface can induce strong metal-support interactions (SMSI) with the Pd catalyst, leading to optimal methanol adsorption. This MXene-supported Pd catalyst exhibits a much higher MOR current density (12.4 mA cm-2) than that of commercial Pd/C (7.6 mA cm-2). Our work largely optimizes the intrinsic activity of a Pd catalyst by the utilization of MXene surface terminations, and the crucial SMSI effects revealed herein open a rational avenue to the design of more efficient noble metal catalysts for MOR.

12.
ChemSusChem ; 13(19): 5239-5247, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667734

RESUMO

A rational design is reported of Fe-doped cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon nanotube frameworks (Fe-Co1.11 Te2 @NCNTF) by tellurization of Fe-etched ZIF-67 under a mixed H2 /Ar atmosphere. Fe-doping was able to effectively modulate the electronic structure of Co1.11 Te2 , increase the reaction activity, and further improve the electrochemical performance. The optimized electrocatalyst exhibited superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in an alkaline electrolyte with low overpotentials of 107 and 297 mV with a current density of 10 mA cm-2 , in contrast to the undoped Co1.11 Te2 @NCNTF (165 and 360 mV, respectively). The overall water splitting performance only required a voltage of 1.61 V to drive a current density of 10 mA cm-2 . Density function theory (DFT) calculations indicated that the Fe-doping not only afforded abundant exposed active sites but also decreased the hydrogen binding free energy. This work provided a feasible way to study non-precious-metal catalysts for an efficient overall water splitting.

13.
ACS Appl Mater Interfaces ; 12(8): 9181-9189, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32039577

RESUMO

The shuttle effect of lithium polysulfides (Li2Sn) in electrolyte and the low conductivity of sulfur are the two key hindrances of lithium sulfur (Li-S) batteries. In order to address the two issues, we propose a three-dimensional porous nitrogen-doped carbon nanosheet with embedded NixCo3-xS4 nanocrystals derived from metal-organic frameworks for the durable-cathode host material in Li-S batteries. Experiments and density functional theory simulations show that the large porosity, robust N-doped carbon framework, and evenly embedded NixCo3-xS4 nanocrystals with high polarity act as strong "traps" for the immobilization of Li2Sn, which leads to an effective suppressing of the shuttle effect and promotes efficient utilization of sulfur. The NixCo3-xS4/N-doped carbon hybrid material exhibits a high reversible capacity of 1122 mAh g-1 at a current density of 0.5 C after 100 cycles. Even at high areal sulfur loadings of 10 and 12 mg cm-2, the hybrid cathode materials can maintain good areal capacities of 7.2 and 7.6 mAh cm-2 after 100 cycles. The present study sheds light on the principles of the anchoring behaviors of Li2Sn species on bimetallic sulfide hybrid materials and reveals an attractive route to design the highly desirable cathode materials for Li-S batteries.

14.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952320

RESUMO

Doping of nitrogen is a promising approach to improve the electrical conductivity of 3C-SiC and allow its application in various fields. N-doped, <110>-oriented 3C-SiC bulks with different doping concentrations were prepared via halide laser chemical vapour deposition (HLCVD) using tetrachlorosilane (SiCl4) and methane (CH4) as precursors, along with nitrogen (N2) as a dopant. We investigated the effect of the volume fraction of nitrogen (ϕN2) on the preferred orientation, microstructure, electrical conductivity (σ), deposition rate (Rdep), and optical transmittance. The preference of 3C-SiC for the <110> orientation increased with increasing ϕN2. The σ value of the N-doped 3C-SiC bulk substrates first increased and then decreased with increasing ϕN2, reaching a maximum value of 7.4 × 102 S/m at ϕN2 = 20%. Rdep showed its highest value (3000 µm/h) for the undoped sample and decreased with increasing ϕN2, reaching 1437 µm/h at ϕN2 = 30%. The transmittance of the N-doped 3C-SiC bulks decreased with ϕN2 and showed a declining trend at wavelengths longer than 1000 nm. Compared with the previously prepared <111>-oriented N-doped 3C-SiC, the high-speed preparation of <110>-oriented N-doped 3C-SiC bulks further broadens its application field.

15.
Adv Mater ; 30(45): e1804089, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30259567

RESUMO

Lithium-sulfur (Li-S) batteries have attracted remarkable attention due to their high theoretical capacity of 1675 mAh g-1 , rich resources, inexpensiveness, and environmental friendliness. However, the practical application of the Li-S battery is hindered by the shuttling of soluble lithium polysulfides (LiPSs) and slow redox reactions. Herein, a 3D nitrogen-doped graphene/titanium nitride nanowires (3DNG/TiN) composite is reported as a freestanding electrode for Li-S batteries. The highly porous conductive graphene network provides efficient pathways for both electrons and ions. TiN nanowires attached on the graphene sheets have a strong chemical anchor effect on the polysulfides, which is proved by the superior performance and by density functional theory calculations. As a result, the 3DNG/TiN cathode exhibits an initial capacity of 1510 mAh g-1 and the capacity remains at 1267 mAh g-1 after 100 cycles at 0.5 C. Even at 5 C, a capacity of 676 mAh g-1 is reached. With a high sulfur loading of 9.6 mg cm-2 , the 3DNG cathode achieves an ultrahigh areal capacity of 12.0 mAh cm-2 at a high current density of 8.03 mA cm-2 . This proposed unique structure gives a bright prospect in that high energy density and high power density can be achieved simultaneously for Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA