Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(2): 243-250, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36705520

RESUMO

1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.


Assuntos
Neoplasias Hepáticas , Alcaloides de Pirrolizidina , Ratos , Animais , Alcaloides de Pirrolizidina/metabolismo , Adutos de DNA , Extratos Vegetais/metabolismo , Cromatografia Líquida , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem , Carcinógenos/metabolismo , Suplementos Nutricionais/análise , Óxidos
2.
Hepatology ; 74(1): 264-280, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462832

RESUMO

BACKGROUND AND AIMS: Mutational signature analyses are an effective tool in identifying cancer etiology. Humans are frequently exposed to pyrrolizidine alkaloids (PAs), the most common carcinogenic phytotoxins widely distributed in herbal remedies and foods. However, due to the lack of human epidemiological data, PAs are classified as group II hepatocarcinogens by the World Health Organization. This study identified a PA mutational signature as the biomarker to investigate the association of PA exposure with human liver cancer. APPROACH AND RESULTS: Pyrrole-protein adducts (PPAs), the PA exposure biomarker, were measured and found in 32% of surgically resected specimens from 34 patients with liver cancer in Hong Kong. Next, we delineated the mode of mutagenic and tumorigenic actions of retrorsine, a representative PA, in mice and human hepatocytes (HepaRG). Retrorsine induced DNA adduction, DNA damage, and activation of tumorigenic hepatic progenitor cells, which initiated hepatocarcinogenesis. PA mutational signature, as the unique molecular fingerprint of PA-induced mutation, was derived from exome mutations in retrorsine-exposed mice and HepaRG cells. Notably, PA mutational signature was validated in genomes of patients with PPA-positive liver cancer but not patients with PPA-negative liver cancer, confirming the specificity of this biomarker in revealing PA-associated liver cancers. Furthermore, we examined the established PA mutational signature in 1,513 liver cancer genomes and found that PA-associated liver cancers were potentially prevalent in Asia (Mainland China [48%], Hong Kong [44%], Japan [22%], South Korea [6%], Southeast Asia [25%]) but minor in Western countries (North America [3%] and Europe [5%]). CONCLUSIONS: This study provides a clinical indication of PA-associated liver cancer. We discovered an unexpectedly extensive implication of PA exposure in patients with liver cancer, laying the scientific basis for precautionary approaches and prevention of PA-associated human liver cancers.


Assuntos
Carcinogênese/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Alcaloides de Pirrolizidina/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Sequenciamento do Exoma
3.
Arch Toxicol ; 95(10): 3191-3204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390356

RESUMO

Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.


Assuntos
Aminoácidos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Pirróis/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
4.
Chem Res Toxicol ; 33(8): 2139-2146, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32588618

RESUMO

1-Formyl-7-hydroxy-6,7-dihydro-5H-pyrrolizine (1-CHO-DHP) is a potential proximate carcinogenic metabolite of pyrrolizidine alkaloids. In the present study, we determined that the reaction of 1-CHO-DHP with cysteine generated four identified products. By mass and 1H NMR spectral analyses, these products are cysteinyl-[2'-S-7]-1-CHO-DHP (P2), cysteinyl-[3'-N-7]-1-CHO-DHP (P3), 7-keto-DHP (P4), and 1-cysteinylimino-DHP (P5). These four compounds were also formed from the incubation of 1-CHO-DHP in HepG2 cells. Compounds P3 and P5 were interconvertible in acetonitrile and water. Incubation of P2 in HepG2 cells generated the four DHP-dG and -dA adducts that we propose to be potential common biomarkers of pyrrolizidine alkaloids exposure and pyrrolizidine alkaloids-induced liver tumor initiation. These four DHP-DNA adducts were also formed from the incubation of a mixture of P3 and P5 in HepG2 cells but not from the incubation with 7-keto-DHP. From the reaction of 1-CHO-DHP with glutathione, only trace amounts of the glutathione-1-CHO-DHP adduct were detected, with the structure unable to be characterized.


Assuntos
Cisteína/metabolismo , DNA/metabolismo , Hepatócitos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Sítios de Ligação , Cisteína/química , DNA/química , Células Hep G2 , Hepatócitos/química , Humanos , Masculino , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Ratos
5.
Chem Res Toxicol ; 32(6): 1193-1203, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31120748

RESUMO

Pyrrolizidine alkaloids (PAs) are phytochemicals present in more than 6000 plant species worldwide; about half of the PAs are hepatotoxic, genotoxic, and carcinogenic. Because of their wide exposure and carcinogenicity, the International Programme on Chemical Safety (IPCS) concluded that PAs are a threat to human health and safety. We recently determined that PA-induced liver tumor initiation is mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-DNA adducts and proposed that these DHP-DNA adducts are biomarkers of PA exposure and liver tumor initiation. To validate the generality of this metabolic activation pathway and DHP-DNA adducts as biomarkers, it is significant to identify reactive metabolites associated with this metabolic activation pathway. Segall et al. ( Segall et al. ( 1984 ) Drug Metab. Dispos. 12 , 68 - 71 ) previously reported that 1-formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP) is generated from the metabolism of senecionine by mouse liver microsomes. In the present study, we examined the metabolism of seven hepatocarcinogenic PAs (senecionine, intermedine, retrorsine, riddelliine, DHR, heliotrine, and senkirkine) and one noncarcinogenic PA (platyphylline) by human, rat, and mouse liver microsomes. 1-CHO-DHP was identified as a common metabolite from the metabolism of these hepatotoxic PAs, but not from platyphylline. Incubation of 1-CHO-DHP with HepG2 and A549 cells produced the same set of DHP-DNA adducts, which were identified by both LC/MS MRM mode and selected ion monitoring analyses through comparison to synthetic standards. In the incubation medium of 1-CHO-DHP treated HepG2 cells, both DHP and 7-cysteine-DHP were formed, which were capable of binding to cellular DNA to produce DHP-DNA adducts. These results suggest that 1-CHO-DHP is a proximate DNA metabolite of genotoxic and carcinogenic PAs.


Assuntos
Carcinógenos/farmacologia , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo , Células A549 , Animais , Carcinógenos/síntese química , Carcinógenos/química , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Endogâmicos F344 , Células Tumorais Cultivadas
6.
Chem Res Toxicol ; 31(7): 619-628, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29855181

RESUMO

Pyrrolizidine alkaloids (PAs) and their N-oxide derivatives are hepatotoxic, genotoxic, and carcinogenic phytochemicals. PAs induce liver tumors through a general genotoxic mechanism mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-derived DNA adducts. To date, the primary pyrrolic metabolites dehydro-PAs, their hydrolyzed metabolite DHP, and two secondary pyrrolic metabolites 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP are the known metabolites that can generate these DHP-DNA adducts in vivo and/or in PA-treated cells. Secondary pyrrolic metabolites are formed from the reaction of dehydro-PAs with glutathione, amino acids, and proteins. In this investigation, we determined whether or not more secondary pyrrolic metabolites can bind to calf thymus DNA and to cellular DNA in HepG2 cells resulting in the formation of DHP-DNA adducts using a series of secondary pyrrolic metabolites (including 7-methoxy-DHP, 9-ethoxy-DHP, 9-valine-DHP, 7-GS-DHP, 7-cysteine-DHP, and 7,9-diglutathione-DHP) and synthetic pyrroles for study. We found that (i) many secondary pyrrolic metabolites are DNA reactive and can form DHP-DNA adducts and (ii) multiple activation pathways are involved in producing DHP-DNA adducts associated with PA-induced liver tumor initiation. These results suggest that secondary pyrrolic metabolites play a vital role in the initiation of PA-induced liver tumors.


Assuntos
Carcinógenos/química , Adutos de DNA/metabolismo , Alcaloides de Pirrolizidina/química , Animais , Carcinógenos/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , DNA/química , Adutos de DNA/análise , Glutationa/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Microssomos Hepáticos/metabolismo , Monocrotalina/análogos & derivados , Monocrotalina/química , Alcaloides de Pirrolizidina/metabolismo , Espectrometria de Massas em Tandem , Valina/química
7.
Chem Res Toxicol ; 30(3): 851-858, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125883

RESUMO

Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.


Assuntos
Adutos de DNA/química , Heliotropium/fisiologia , Fígado/química , Plantas Tóxicas/toxicidade , Alcaloides de Pirrolizidina/química , Animais , Bovinos , Cromatografia Líquida , Fígado/patologia , Espectrometria de Massas em Tandem
8.
Artigo em Inglês | MEDLINE | ID: mdl-28418776

RESUMO

Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.


Assuntos
Carcinógenos/toxicidade , Cisteína/análogos & derivados , Glutationa/análogos & derivados , Pirróis/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Animais , Cisteína/metabolismo , Cisteína/toxicidade , Adutos de DNA , Glutationa/metabolismo , Glutationa/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Ratos , Ratos Endogâmicos F344
9.
Arch Toxicol ; 91(2): 949-965, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27125825

RESUMO

Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2ß). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2ß). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.


Assuntos
Adutos de DNA/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Alcaloides de Pirrolizidina/administração & dosagem
11.
Chem Res Toxicol ; 29(8): 1282-92, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27388689

RESUMO

Pyrrolizidine alkaloids (PAs) are phytochemicals present in hundreds of plant species from different families widely distributed in many geographical regions around the world. PA-containing plants are probably the most common type of poisonous plants affecting livestock, wildlife, and humans. There have been many large-scale human poisonings caused by the consumption of food contaminated with toxic PAs. PAs require metabolic activation to generate pyrrolic metabolites to exert their toxicity. In this study, we developed a novel method to quantify pyrrole-protein adducts present in the blood. This method involves the use of AgNO3 in acidic ethanol to cleave the thiol linkage of pyrrole-protein (DHP-protein) adducts, and the resulting 7,9-di-C2H5O-DHP is quantified by HPLC-ES-MS/MS multiple reaction monitoring analysis in the presence of a known quantity of isotopically labeled 7,9-di-C2D5O-DHP internal standard. Using this method, we determined that diester-type PAs administered to rats produced higher levels of DHP-protein adducts than other types of PAs. The results suggest that DHP-protein adducts can potentially serve as minimally invasive biomarkers of PA exposure.


Assuntos
Biomarcadores/metabolismo , Fígado/efeitos dos fármacos , Proteínas/química , Alcaloides de Pirrolizidina/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Ratos , Espectrometria de Massas por Ionização por Electrospray
12.
Artigo em Inglês | MEDLINE | ID: mdl-26761716

RESUMO

Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.


Assuntos
Cisteína/química , Microssomos Hepáticos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Cisteína/metabolismo , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Glutationa/análise , Glutationa/metabolismo , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Monocrotalina/análogos & derivados , Monocrotalina/metabolismo , Monocrotalina/farmacocinética , Alcaloides de Pirrolizidina/farmacocinética , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem
13.
Chem Res Toxicol ; 28(4): 615-20, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25768656

RESUMO

Pyrrolizidine alkaloid (PA)-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form pyrrolic metabolites to exert cytotoxicity and tumorigenicity. We previously determined that metabolism of tumorigenic PAs produced four DNA adducts, designated as DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, that are responsible for liver tumor initiation. 7-Glutathione-(±)-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP), formed in vivo and in vitro, and 7,9-di-GS-DHP, formed in vitro, are both considered detoxified metabolites. However, in this study we determined that incubation of 7-GS-DHP with 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) yields DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts as well as the reactive metabolite DHP. Furthermore, reaction of 7-GS-DHP with calf thymus DNA in aqueous solution at 37 °C for 4, 8, 16, 24, 48, or 72 h, followed by enzymatic hydrolysis yielded DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts. Under our current experimental conditions, DHP-dA-3 and DHP-dA-4 adducts were formed in a trace amount from the reaction of 7,9-di-GS-DHP with dA. No DHP-dG-3 or DHP-dG-4 adducts were detected from the reaction of 7,9-di-GS-DHP with dG. This study represents the first report that the 7-GS-DHP adduct can be a potential reactive metabolite of PAs leading to DNA adduct formation.


Assuntos
Adutos de DNA/química , Glutationa/química , Pirróis/química , Alcaloides de Pirrolizidina/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão
14.
Toxicol Ind Health ; 31(10): 898-910, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23552265

RESUMO

Benzo[a]pyrene (BaP) is a prototype for studying carcinogenesis of polycyclic aromatic hydrocarbons (PAHs). We have long been interested in studying the phototoxicity of PAHs. In this study, we determined that metabolism of BaP by human skin HaCaT keratinocytes resulted in six identified phase I metabolites, for example, BaP trans-7,8-dihydrodiol (BaP t-7,8-diol), BaP t-4,5-diol, BaP t-9,10-diol, 3-hydroxybenzo[a]pyrene (3-OH-BaP), BaP (7,10/8,9)tetrol, and BaP (7/8,9,10)tetrol. The photocytotoxicity of BaP, 3-OH-BaP, BaP t-7,8-diol, BaP trans-7,8-diol-anti-9,10-epoxide (BPDE), and BaP (7,10/8,9)tetrol in the HaCaT keratinocytes was examined. When irradiated with 1.0 J/cm(2) UVA light, these compounds when tested at doses of 0.1, 0.2, and 0.5 µM, all induced photocytotoxicity in a dose-dependent manner. When photoirradiation was conducted in the presence of a lipid (methyl linoleate), BaP metabolites, BPDE, and three related PAHs, pyrene, 7,8,9,10-tetrahydro-BaP trans-7,8-diol, and 7,8,9,10-tetrahydro-BaP trans-9,10-diol, all induced lipid peroxidation. The formation of lipid peroxides by BaP t-7,8-diol was inhibited by NaN3 and enhanced by deuterated methanol, which suggests that singlet oxygen may be involved in the generation of lipid peroxides. The formation of lipid hydroperoxides was partially inhibited by superoxide dismutase (SOD). Electron spin resonance spin trapping experiments indicated that both singlet oxygen and superoxide radical anion were generated from UVA photoirradiation of BPDE in a light dose responding manner.


Assuntos
Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Benzo(a)pireno/química , Benzo(a)pireno/efeitos da radiação , Células Cultivadas , Humanos , Raios Ultravioleta
15.
Chem Res Toxicol ; 27(10): 1720-31, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25211425

RESUMO

Pyrrolizidine alkaloid-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids exert toxicity through metabolism to dehydropyrrolizidine alkaloids that bind to cellular protein and DNA, leading to hepatotoxicity, genotoxicity, and tumorigenicity. To date, it is not clear how dehydropyrrolizidine alkaloids bind to cellular constituents, including amino acids and proteins, resulting in toxicity. Metabolism of carcinogenic monocrotaline, riddelliine, and heliotrine produces dehydromonocrotaline, dehyroriddelliine, and dehydroheliotrine, respectively, as primary reactive metabolites. In this study, we report that reaction of dehydromonocrotaline with valine generated four highly unstable 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived valine (DHP-valine) adducts. For structural elucidation, DHP-valine adducts were derivatized with phenyl isothiocyanate (PITC) to DHP-valine-PITC products. After HPLC separation, their structures were characterized by mass spectrometry, UV-visible spectrophotometry, (1)H NMR, and (1)H-(1)H COSY NMR spectral analysis. Two DHP-valine-PITC adducts, designated as DHP-valine-PITC-1 and DHP-valine-PITC-3, had the amino group of valine linked to the C7 position of the necine base, and the other two DHP-valine-PITC products, DHP-valine-PITC-2 and DHP-valine-PITC-4, linked to the C9 position of the necine base. DHP-valine-PITC-1 was interconvertible with DHP-valine-PITC-3, and DHP-valine-PITC-2 was interconvertible with DHP-valine-PITC-4. Reaction of dehydroriddelliine and dehydroheliotrine with valine provided similar results. However, reaction of valine and dehydroretronecine (DHR) under similar experimental conditions did not produce DHP-valine adducts. Reaction of dehydromonocrotaline with rat hemoglobin followed by derivatization with PITC also generated the same four DHP-valine-PITC adducts. This represents the first full structural elucidation of protein conjugated pyrrolic adducts formed from reaction of dehydropyrrolizidine alkaloids with an amino acid (valine). In addition, it was found that DHP-valine-2 and DHP-valine-4, with the valine amino group linked at the C7 position of the necine base, can lose the valine moiety to form DHP.


Assuntos
Alcaloides/química , Hemoglobinas/química , Alcaloides de Pirrolizidina/química , Valina/química , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Isotiocianatos/química , Espectroscopia de Ressonância Magnética , Monocrotalina/análogos & derivados , Monocrotalina/química , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem
16.
Artigo em Inglês | MEDLINE | ID: mdl-24875443

RESUMO

Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles' catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activity of natural enzymes. Many nanoparticles with enzyme-like activities have been found, potentially capable of being applied for commercial uses, such as in biosensors, pharmaceutical processes, and the food industry. To date, a variety of nanoparticles, especially those formed from noble metals, have been determined to possess oxidase-like, peroxidase-like, catalase-like, and/or superoxide dismutase-like activity. The ability of nanoparticles to mimic enzymatic activity, especially peroxidase mimics, can be used in a variety of applications, such as detection of glucose in biological samples and waste water treatment. To study the enzyme-like activity of nanoparticles, the electron spin resonance method represents a critically important and convenient analytical approach for zero-time detection of the reactive substrates and products as well as for mechanism determination.


Assuntos
Nanoestruturas/química , Espécies Reativas de Oxigênio/química , Catalase/metabolismo , Nanopartículas Metálicas/química , Oxirredutases/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-25436474

RESUMO

Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.


Assuntos
Dano ao DNA , Dermatite Fototóxica/etiologia , Queratinócitos/efeitos dos fármacos , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Raios Ultravioleta , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Espécies Reativas de Oxigênio/metabolismo
18.
Chem Res Toxicol ; 26(9): 1384-96, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23937665

RESUMO

Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 µmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of pyrrolizidine alkaloid-induced liver tumor formation. To date, this is the first finding that a set of exogenous DNA adducts are commonly formed from a series of tumorigenic xenobiotics.


Assuntos
Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Testes de Carcinogenicidade , Carcinógenos/administração & dosagem , Carcinógenos/química , Adutos de DNA/administração & dosagem , Adutos de DNA/química , Feminino , Neoplasias Hepáticas Experimentais/induzido quimicamente , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/análise , Ratos , Ratos Endogâmicos F344
19.
Artigo em Inglês | MEDLINE | ID: mdl-24024520

RESUMO

Plants are used by humans in daily life in many different ways, including as food, herbal medicines, and cosmetics. Unfortunately, many natural plants and their chemical constituents are photocytotoxic and photogenotoxic, and these phototoxic phytochemicals are widely present in many different plant families. To date, information concerning the phototoxicity and photogenotoxicity of many plants and their chemical constituents is limited. In this review, we discuss phototoxic plants and their major phototoxic constituents; routes of human exposure; phototoxicity of these plants and their constituents; general mechanisms of phototoxicity of plants and phototoxic components; and several representative phototoxic plants and their photoactive chemical constituents.


Assuntos
Dermatite Fototóxica/etiologia , Fármacos Fotossensibilizantes/toxicidade , Compostos Fitoquímicos/toxicidade , Plantas/toxicidade , Animais , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Compostos Fitoquímicos/química , Plantas/química , Ratos , Testes de Toxicidade
20.
J Nanosci Nanotechnol ; 13(6): 3880-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862422

RESUMO

Zinc oxide nanoparticles (nano-ZnO) are one of the most commonly used nanomaterials in industrial products including paints, cosmetics, and medical materials. Since ZnO is a well-known photocatalyst, it is important to further study if nano-ZnO cause phototoxic effect on skin cells under UVA-irradiation and visible light illumination. Human-derived keratinocytes (HaCaT) were treated with 1-20 microg/mL of nano-ZnO (< 50 nm) and then exposed to UVA (0.5-2 J/cm2). Twenty four hours later, cell viability, membrane integrity, and oxidative DNA damage were determined by MTS assay, lactate dehydrogenase (LDH) release, and the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct, respectively. High concentration of nano-ZnO (10-20 microg/mL) significantly induced cytotoxicity, whereas 0.5-2 J/cm2 of UVA irradiation dose-dependently aggravated nano-ZnO-induced cell death via induction of LDH release and DNA damage. The level of photocytotoxicity is mainly dependent on the level of reactive oxygen species (ROS) production. UVA irradiation of nano-ZnO in methanol induced lipid peroxidation in a light dose and substrate dose response manner. Electron spin resonance (ESR) spin trapping studies confirmed that both hydroxyl radical and superoxide anion radical were formed during photoirradiation, while nano-ZnO-induced hydroxyl radical formation is not evolved from superoxide. In addition, nano-ZnO dose-dependently induced single strand DNA break in supercoiled phi x 174 plasmid DNA. Under visible light illumination, nano-ZnO induced the LDH leakage, hydroxyl radical generation, and 8-OHdG formation in a dose-dependent manner. Collectively, these results suggest the photocytotoxic and photogenotoxic effects of nano-ZnO on human skin keratinocytes.


Assuntos
Dano ao DNA , Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Óxido de Zinco/toxicidade , Linhagem Celular Transformada , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA