RESUMO
The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7â Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A â¼4â kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.
Assuntos
Cucumis sativus , Genoma de Planta , Hipocótilo , Locos de Características Quantitativas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , LuzRESUMO
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannanesis) is a semiwild variety originating from low latitude tropic areas, and therefore shows extreme cold sensitivity and heat tolerance. Here, we mapped the quantitative trait loci (QTLs) that control the cold sensitivity and heat tolerance of XIS cucumber seedlings. Using bulked segregant analysis (BSA), we identified three QTLs (HTT1.1, HTT3.1, and HTT3.2, with a total length of 11.98 Mb) for heat tolerance and two QTLs (LTT6.1 and LTT6.2, with a total length of 8.74 Mb) for cold sensitivity. The QTL LTT6.1 was then narrowed down to a length of 641 kb by using kompetitive allele-specific PCR (KASP) markers. Based on structural variants (SVs) and single-nucleotide polymorphisms (SNPs), we found the LTT6.1 is covered by a high divergent region including a 50 kb deletion in the XIS49 genome, which affects the gene structure of lipase abhydrolase domain containing 6 (ABHD6, Csa_6G032560). Accordingly, there is a very big difference in lipid composition, but not in other osmoprotectants like free amino acids and fatty acids, between XIS49 and cultivated cucumber CL. Moreover, we calculated the composite likelihood ratio (CLR) and identified selective sweeps from 115 resequencing data, and found that lipid- and fatty-acid-related processes are major aspects in the domestication of the XIS group cucumber. LTT6.1 is a particularly special region positioned nearby lipid-related selective sweeps. These studies above suggested that the lipid-related domestication of XIS cucumbers should account for their extreme cold sensitivity.
Assuntos
Cucumis sativus , Frio Extremo , Cucumis sativus/genética , Domesticação , Alelos , Ácidos GraxosRESUMO
Chinese chives is a popular herb vegetable and medicine in Asian countries. Southwest China is one of the centers of origin, and the mountainous areas in this region are rich in wild germplasm. In this study, we collected four samples of germplasm from different altitudes: a land race of cultivated Chinese chives (Allium tuberosum), wide-leaf chives and extra-wide-leaf chives (Allium hookeri), and ovoid-leaf chives (Allium funckiaefolium). Leaf metabolites were detected and compared between A. tuberosum and A. hookeri. A total of 158 differentially accumulated metabolites (DAM) were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), among which there was a wide range of garlic odor compounds, free amino acids, and sugars. A. hookeri contains a higher content of fructose, garlic odor compounds, and amino acids than A. tuberosum, which is supported by the higher expression level of biosynthetic genes revealed by transcriptome analysis. A. hookeri accumulates the same garlic odor compound precursors that A. tuberosum does (mainly methiin and alliin). We isolated full-length gene sequences of phytochelatin synthase (PCS), γ-glutamyltranspeptidases (GGT), flavin-containing monooxygenase (FMO), and alliinase (ALN). These sequences showed closer relations in phylogenetic analysis between A. hookeri and A. tuberosum (with sequence identities ranging from 86% to 90%) than with Allium cepa or Allium sativum (which had a lower sequence identity ranging from 76% to 88%). Among these assayed genes, ALN, the critical gene controlling the conversion of odorless precursors into odor compounds, was undetected in leaves, bulbs, and roots of A. tuberosum, which could account for its weaker garlic smell. Moreover, we identified a distinct FMO1 gene in extra-wide-leaf A. hookeri that is due to a CDS-deletion and frameshift mutation. These results above reveal the molecular and metabolomic basis of impressive strong odor in wild Chinese chives.
Assuntos
Allium , Cebolinha-Francesa , Alho , Allium/química , Allium/genética , Cebolinha-Francesa/genética , Alho/genética , Alho/metabolismo , Espectrometria de Massas/métodos , Odorantes , FilogeniaRESUMO
Cucumbers (Cucumis sativus L.) originated from the South Asian subcontinent, and most of them are fragile to cold stress. In this study, we evaluated the cold tolerance of 115 cucumber accessions and screened out 10 accessions showing high resistance to cold stress. We measured and compared plant hormone contents between cold-tolerant cucumber CT90R and cold-sensitive cucumber CT57S in cold treatment. Most of the detected plant hormones showed significantly higher content in CT90R. To elucidate the role of plant hormones, we compared the leaf- and root-transcriptomes of CT90R with those of CT57S in cold stress treatment. In leaves, there were 1209 differentially expressed genes (DEGs) between CT90R and CT57S, while there were 703 in roots. These DEGs were not evenly distributed across the chromosomes and there were significant enrichments at particular positions, including qLTT6.2, a known QTL controlling cucumber cold tolerance. The GO and KEGG enrichment analysis showed that there was a significant difference in the pathway of plant hormone transductions between CT90R and CT57S in leaves. In short, genes involved in plant hormone transductions showed lower transcription levels in CT90R. In roots, the most significantly different pathway was phenylpropanoid biosynthesis. CT90R seemed to actively accumulate more monolignols by upregulating cinnamyl-alcohol dehydrogenase (CAD) genes. These results above suggest a new perspective on the regulation mechanism of cold tolerance in cucumbers.