RESUMO
Maize (Zea mays) originated in southern Mexico and has spread over a wide latitudinal range. Maize expansion from tropical to temperate regions has necessitated a reduction of its photoperiod sensitivity. In this study, we cloned a quantitative trait locus (QTL) regulating flowering time in maize and show that the maize ortholog of Arabidopsis thaliana EARLY FLOWERING3, ZmELF3.1, is the causal locus. We demonstrate that ZmELF3.1 and ZmELF3.2 proteins can physically interact with ZmELF4.1/4.2 and ZmLUX1/2, to form evening complex(es; ECs) in the maize circadian clock. Loss-of-function mutants for ZmELF3.1/3.2 and ZmLUX1/2 exhibited delayed flowering under long-day and short-day conditions. We show that EC directly represses the expression of several flowering suppressor genes, such as the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) genes ZmCCT9 and ZmCCT10, ZmCONSTANS-LIKE 3, and the PSEUDORESPONSE REGULATOR (PRR) genes ZmPRR37a and ZmPRR73, thus alleviating their inhibition, allowing florigen gene expression and promoting flowering. Further, we identify two closely linked retrotransposons located in the ZmELF3.1 promoter that regulate the expression levels of ZmELF3.1 and may have been positively selected during postdomestication spread of maize from tropical to temperate regions during the pre-Columbian era. These findings provide insights into circadian clock-mediated regulation of photoperiodic flowering in maize and new targets of genetic improvement for breeding.
Assuntos
Arabidopsis , Zea mays , Zea mays/metabolismo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Aclimatação/genética , Fotoperíodo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.
Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Zea mays , Perfilação da Expressão Gênica , Locos de Características Quantitativas/genética , Variação Genética , Zea mays/genética , Zea mays/metabolismoRESUMO
Hybrid maize displays superior heterosis and contributes over 30% of total worldwide cereal production. However, the molecular mechanisms of heterosis remain obscure. Here we show that structural variants (SVs) between the parental lines have a predominant role underpinning maize heterosis. De novo assembly and analyses of 12 maize founder inbred lines (FILs) reveal abundant genetic variations among these FILs and, through expression quantitative trait loci and association analyses, we identify several SVs contributing to genomic and phenotypic differentiations of various heterotic groups. Using a set of 91 diallel-cross F1 hybrids, we found strong positive correlations between better-parent heterosis of the F1 hybrids and the numbers of SVs between the parental lines, providing concrete genomic support for a prevalent role of genetic complementation underlying heterosis. Further, we document evidence that SVs in both ZAR1 and ZmACO2 contribute to yield heterosis in an overdominance fashion. Our results should promote genomics-based breeding of hybrid maize.