Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114812, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395862

RESUMO

Water quality parameters (WQP) are the most intuitive indicators of the environmental quality of water body. Due to the complexity and variability of the chemical environment of water body, simple and rapid detection of multiple parameters of water quality becomes a difficult task. In this paper, spectral images (named SPIs) and deep learning (DL) techniques were combined to construct an intelligent method for WQP detection. A novel spectroscopic instrument was used to obtain SPIs, which were converted into feature images of water chemistry and then combined with deep convolutional neural networks (CNNs) to train models and predict WQP. The results showed that the method of combining SPIs and DL has high accuracy and stability, and good prediction results with average relative error of each parameter (anions and cations, TOC, TP, TN, NO3--N, NH3-N) at 1.3%, coefficient of determination (R2) of 0.996, root mean square error (RMSE) of 0.1, residual prediction deviation (RPD) of 16.2, and mean absolute error (MAE) of 0.067. The method can achieve rapid and accurate detection of high-dimensional water quality multi-parameters, and has the advantages of simple pre-processing and low cost. It can be applied not only to the intelligent detection of environmental waters, but also has the potential to be applied in chemical, biological and medical fields.


Assuntos
Técnicas de Química Analítica , Monitoramento Ambiental , Qualidade da Água , Redes Neurais de Computação , Análise Espectral , Monitoramento Ambiental/métodos , Técnicas de Química Analítica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA