Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cerebrovasc Dis ; 50(3): 262-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744885

RESUMO

BACKGROUND: Carotid atherosclerosis is one of the main underlying inducements of stroke, which is a leading cause of disability. The morphological feature and biomechanical environment have been found to play important roles in atherosclerotic plaque progression. However, the biomechanics in each patient's blood vessel is complicated and unique. METHOD: To analyse the biomechanical risk of the patient-specific carotid stenosis, this study used the fluid-structure interaction (FSI) computational biomechanical model. This model coupled both structural and hemodynamic analysis. Two patients with carotid stenosis planned for carotid endarterectomy were included in this study. The 3D models of carotid bifurcation were reconstructed using our in-house-developed protocol based on multisequence magnetic resonance imaging (MRI) data. Patient-specific flow and pressure waveforms were used in the computational analysis. Multiple biomechanical risk factors including structural and hemodynamic stresses were employed in post-processing to assess the plaque vulnerability. RESULTS: Significant difference in morphological and biomechanical conditions between 2 patients was observed. Patient I had a large lipid core and serve stenosis at carotid bulb. The stenosis changed the cross-sectional shape of the lumen. The blood flow pattern changed consequently and led to a complex biomechanical environment. The FSI results suggested a potential plaque progression may lead to a high-risk plaque, if no proper treatment was performed. The patient II had significant tandem stenosis at both common and internal carotid artery (CCA and ICA). From the results of biomechanical factors, both stenoses had a high potential of plaque progression. Especially for the plaque at ICA branch, the current 2 small plaques might further enlarge and merge as a large vulnerable plaque. The risk of plaque rupture would also increase. CONCLUSIONS: Computational biomechanical analysis is a useful tool to provide the biomechanical risk factors to help clinicians assess and predict the patient-specific plaque vulnerability. The FSI computational model coupling the structural and hemodynamic computational analysis, better replicates the in vivo biomechanical condition, which can provide multiple structural and flow-based risk factors to assess plaque vulnerability.


Assuntos
Artérias Carótidas/fisiopatologia , Estenose das Carótidas/fisiopatologia , Hemodinâmica , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Idoso , Fenômenos Biomecânicos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/cirurgia , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Tomada de Decisão Clínica , Endarterectomia das Carótidas , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Medição de Risco , Fatores de Risco , Ruptura Espontânea , Estresse Mecânico
2.
Comput Methods Programs Biomed ; 244: 107975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128464

RESUMO

BACKGROUND AND OBJECTIVE: Intracranial aneurysms are relatively common life-threatening diseases, and assessing aneurysm rupture risk and identifying the associated risk factors is essential. Parameters such as the Oscillatory Shear Index, Pressure Loss Coefficient, and Wall Shear Stress are reliable indicators of intracranial aneurysm development and rupture risk, but aneurysm surface irregular pulsation has also received attention in aneurysm rupture risk assessment. METHODS: The present paper proposed a new approach to estimate aneurysm surface deformation. This method transforms the estimation of aneurysm surface deformation into a constrained optimization problem, which minimizes the error between the displacement estimated by the model and the sparse data point displacements from the four-dimensional CT angiography (4D-CTA) imaging data. RESULTS: The effect of the number of sparse data points on the results has been discussed in both simulation and experimental results, and it shows that the proposed method can accurately estimate the surface deformation of intracranial aneurysms when using sufficient sparse data points. CONCLUSIONS: Due to a potential association between aneurysm rupture and surface irregular pulsation, the estimation of aneurysm surface deformation is needed. This paper proposed a method based on 4D-CTA imaging data, offering a novel solution for the estimation of intracranial aneurysm surface deformation.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia Cerebral/métodos , Tomografia Computadorizada Quadridimensional/métodos , Simulação por Computador , Medição de Risco , Aneurisma Roto/diagnóstico por imagem
3.
Ultrasound Med Biol ; 49(3): 820-830, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36535833

RESUMO

Different body postures and physical exercises may lead to changes in arterial geometry and hemodynamics, which may be associated with the distribution of atherosclerosis lesions. This study was aimed at investigating potential geometric and hemodynamic changes of the carotid bifurcation in different body postures and after high-intensity interval training (HIIT) workouts. Three-dimensional vascular ultrasound (3DVUS) and Doppler ultrasound images were acquired for 21 healthy participants (aged 29 ± 6 y, 14 men and 7 women) in different body postures (sitting and three sleeping postures [supine, left lateral and right lateral]) and after physical exercises. The common carotid artery (CCA) and internal carotid artery (ICA) diameters of the left carotid artery were found to increase significantly from supine to left lateral (both p <0.05). CCA diameters (p < 0.05) and ICA/CCA diameter ratio (p < 0.01) of the left carotid artery changed significantly from supine to sitting. Significant differences in CCA peak systolic velocity (CCA PSV, p < 0.001), CCA end-diastolic velocity (CCA EDV, p < 0.001), CCA pulsatility index (CCA PI, p < 0.001) and maximum velocity-based wall shear stress at the CCA (WSS(max) at the CCA, p < 0.001) were identified in different postures. After physical exercises, significant increases were observed in the CCA diameter (p < 0.001), CCA PSV (p < 0.001), ICA PSV (p < 0.05), WSS(max) at the CCA (p < 0.001) and WSS(max) at the ICA (p < 0.05), as were significantly lower values of the CCA EDV (p < 0.01) and ICA/CCA PSV ratio (p < 0.05). Side-to-side differences were also detected in different postural change scenarios and after physical exercise; more significant differences were found to occur only in the left-sided carotid artery. Significant differences were identified under postural change and after physical exercise among healthy adults, suggesting that daily activity has an effect on the carotid bifurcation. These changes may be associated with formation and development of carotid atherosclerosis. Moreover, these side differences might be severe for patients and worth further attention in clinical practice.


Assuntos
Artéria Carótida Interna , Estenose das Carótidas , Masculino , Adulto , Humanos , Feminino , Artéria Carótida Interna/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Ultrassonografia Doppler Dupla , Artéria Carótida Primitiva/diagnóstico por imagem , Postura , Exercício Físico
4.
Biomech Model Mechanobiol ; 22(2): 729-738, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602717

RESUMO

It remains unknown that the degree of bias in computational fluid dynamics results without considering coronary cyclic bending. This study aims to investigate the influence of different rates of coronary cyclic bending on coronary hemodynamics. To model coronary bending, a multi-ring-controlled fluid-structural interaction model was designed. A coronary artery was simulated with various cyclic bending rates (0.5, 0.75 and 1 s, corresponding to heart rates of 120, 80 and 60 bpm) and compared against a stable model. The simulated results show that the hemodynamic parameters of vortex Q-criterion, temporal wall shear stress (WSS), time-averaged WSS (TaWSS) and oscillatory shear index (OSI) were sensitive to the changes in cyclic rate. A higher heart rate resulted in higher magnitude and larger variance in the hemodynamic parameters. Whereas, the values and distributions of flow velocity and relative residence time (RRT) did not show significant differences between different bending periods. This study suggests that a stable coronary model is not sufficient to represent the hemodynamics in a bending coronary artery. Different heart rate conditions were found to have significant impact on the hemodynamic parameters. Thus, cyclic bending should be considered to mimic the realistic hemodynamics in future patient-specific coronary hemodynamics studies.


Assuntos
Coração , Hemodinâmica , Humanos , Coração/fisiologia , Vasos Coronários , Modelos Cardiovasculares , Estresse Mecânico
5.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551791

RESUMO

Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid-structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA