Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Glob Chang Biol ; 30(1): e17070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273549

RESUMO

Tidal wetlands sequester vast amounts of organic carbon (OC) and enhance soil accretion. The conservation and restoration of these ecosystems is becoming increasingly geared toward "blue" carbon sequestration while obtaining additional benefits, such as buffering sea-level rise and enhancing biodiversity. However, the assessments of blue carbon sequestration focus primarily on bulk SOC inventories and often neglect OC fractions and their drivers; this limits our understanding of the mechanisms controlling OC storage and opportunities to enhance blue carbon sinks. Here, we determined mineral-associated and particulate organic matter (MAOM and POM, respectively) in 99 surface soils and 40 soil cores collected from Chinese mangrove and saltmarsh habitats across a broad range of climates and accretion rates and showed how previously unrecognized mechanisms of climate and mineral accretion regulated MAOM and POM accumulation in tidal wetlands. MAOM concentrations (8.0 ± 5.7 g C kg-1 ) (±standard deviation) were significantly higher than POM concentrations (4.2 ± 5.7 g C kg-1 ) across the different soil depths and habitats. MAOM contributed over 51.6 ± 24.9% and 78.9 ± 19.0% to OC in mangrove and saltmarsh soils, respectively; both exhibited lower autochthonous contributions but higher contributions from terrestrial or marine sources than POM, which was derived primarily from autochthonous sources. Increased input of plant-derived organic matter along the increased temperature and precipitation gradients significantly enriched the POM concentrations. In contrast, the MAOM concentrations depended on climate, which controlled the mineral reactivity and mineral-OC interactions, and on regional sedimentary processes that could redistribute the reactive minerals. Mineral accretion diluted the POM concentrations and potentially enhanced the MAOM concentrations depending on mineral composition and whether the mineral accretion benefited plant productivity. Therefore, management strategies should comprehensively consider regional climate while regulating sediment supply and mineral abundance with engineering solutions to tap the OC sink potential of tidal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Minerais , Sequestro de Carbono , Carbono
2.
Nature ; 529(7585): 190-4, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26689365

RESUMO

The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of ß-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. ß-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked ß-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink ß-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of ß-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous ß-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.


Assuntos
Celulose/química , Ciclodextrinas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Compostos Benzidrílicos/química , Compostos Benzidrílicos/isolamento & purificação , Celulose/síntese química , Carvão Vegetal/química , Ciclodextrinas/síntese química , Fenóis/química , Fenóis/isolamento & purificação , Porosidade , Reciclagem/economia , Reciclagem/métodos , Temperatura , Fatores de Tempo , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/economia
3.
Environ Res ; 200: 111417, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051197

RESUMO

Biomethane produced by methanogenic archaea is a main greenhouse resource of terrestrial and marine ecosystems, which strongly affects the global environment change. Conductive materials, especially nano-scale, show considerable intervention on biomethane production potential, but the mechanism is still unclear. Herein, we precisely quantified the absolute abundance of Methanosarcina spp. proteins affected by carbon nanotubes (CNTs) using tandem mass tag (TMT) proteomics technology. Among the 927 detectable proteins, more than three hundred, 304, showed differential expression. Gene Set Enrichment Analysis on KEGG pathways and GO biological processes revealed a trend of decreased protein synthesis induced by CNTs, suggesting these conductive nanomaterials may replace part of the cell structure and function. Interestingly, increased acetoclastic methanogenesis actually came at the expense of reduced protein synthesis in related pathways. CNTs stimulated biomethane production from acetate by stimulating intracellular redox activity and the -COOH oxidation process. These findings enhanced the understanding of the biomethane production process affected by conductive materials.


Assuntos
Nanotubos de Carbono , Archaea , Ecossistema , Metano , Nanotubos de Carbono/toxicidade , Proteômica
4.
Environ Sci Technol ; 54(22): 14246-14253, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33108156

RESUMO

Nitrogen isotope (δ15N) monitoring is a potentially powerful tool in tracing atmospheric nitrogen oxides (NOx); however, the isotopic fingerprint of vehicle exhaust remains poorly interpreted. This deficiency limits our understanding of the origin of atmospheric haze pollution, especially in China. In this study, we systemically explored the δ15N-NOx fingerprints of various vehicle exhausts (n = 137) in China. The δ15N-NOx values of vehicle exhausts ranged from -18.8‰ to +6.4‰, presenting a significant correlation with NOx concentrations (p < 0.01). The highest δ15N-NOx values were observed for liquefied petroleum gas vehicles (-0.1 ± 1.8‰), followed by gasoline vehicles (-7.0 ± 4.8‰) and diesel vehicles (-12.7 ± 3.4‰), all of which displayed a rising trend as emissions standards were continuously updated. The δ15N-NOx values under working conditions followed the trend warm start (-5.9 ± 5.0‰) > driving (-7.3 ± 5.9‰) > cold start (-9.2 ± 2.7‰). By establishing a suitable model for assessing representative δ15N-NOx values, the δ15N-NOx values of various vehicles, including different fuel types with different emission standards, were evaluated. A model of δ15N-NOx associated with motor vehicle data was developed, which estimated the national δ15N-NOx value of vehicle emissions to be -12.6 ± 2.2‰, but there was considerable variation among different target areas in China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Gasolina , Isótopos de Nitrogênio/análise , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
5.
J Basic Microbiol ; 60(1): 37-46, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31696958

RESUMO

Geobacter metallireducens GS15, a model of dissimilatory iron-reducing bacteria, is the key regulator in biogeochemical iron cycling. How the emerging contaminant microplastics involved in the iron cycling are driven by microbes on the microscale remains unknown. Hence, the influences of two typical microplastics, polybutylene terephthalate-hexane acid (PBAT) and polyvinyl chloride (PVC), were explored on the activity of G. metallireducens GS15 with ferrihydrite or ferric citrate as the respective electron acceptors. The results showed that the iron (II) contents in PBAT- and PVC-treatment groups were 16.79 and 6.81 mM, respectively, at the end of the experiment. Compared with the PBAT-treatment group, scanning electron microscopy and energy dispersive spectrometery revealed that merely a small amount of iron-containing products covered the surface of PVC. Moreover, PBAT and PVC could both retard the electroactivity of G. metallireducens GS15 at the beginning of microbial fuel cell operation. On the basis of the results above, microplastic PVC might exhibit potential inhibition of the iron cycling process driven by G. metallireducens GS15 with ferrihydrite as the terminal electron acceptor. This study extended our understanding of the influence of the microplastics PBAT and PVC on microbially mediated biogeochemical iron cycling. The findings might have an important implication on the biogeochemical elements cycling in the ecosystem with the involvement of emerging contaminant microplastics.


Assuntos
Poluentes Ambientais/toxicidade , Compostos Férricos/metabolismo , Geobacter/efeitos dos fármacos , Microplásticos/toxicidade , Cloreto de Polivinila/toxicidade , Eletroquímica , Geobacter/metabolismo , Oxirredução , Poliésteres/toxicidade
6.
J Am Chem Soc ; 141(34): 13315-13319, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31411879

RESUMO

Disinfection byproducts such as trihalomethanes are commonly found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter found in many drinking water sources. Inspired by molecular CHCl3⊂cavitand host-guest complexes, we designed porous polymers composed of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g-1 of CHCl3). These materials maintain their performance in drinking water and can be thermally regenerated. Cavitand polymers also outperform commercial resins for 1,4-dioxane adsorption, which contaminates many water sources. These materials show promise for water treatment and demonstrate the value of using supramolecular receptors to design adsorbents for water purification.


Assuntos
Calixarenos/química , Dioxanos/isolamento & purificação , Fenilalanina/análogos & derivados , Polímeros/química , Trialometanos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Água Potável/análise , Fenilalanina/química , Porosidade
7.
Angew Chem Int Ed Engl ; 58(35): 12049-12053, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31210007

RESUMO

Organic micropollutants (MPs) are anthropogenic substances that contaminate water resources at trace concentrations. Many MPs, including per- and polyfluorinated alkyl substances (PFASs), have come under increased scrutiny because of their environmental persistence and association with various health problems. A ß-cyclodextrin polymer linked with tetrafluoroterephthalonitrile (TFN-CDP) has high affinity for cationic and many neutral MPs from contaminated water because of anionic groups incorporated during the polymerization. But TFN-CDP does not bind many anionic MPs strongly, including anionic PFASs. To address this shortcoming, we reduced the nitrile groups in TFN-CDP to primary amines, which reverses its affinity towards charged MPs. TFN-CDP exhibits adsorption distribution coefficients (log KD values) of 2-3 for cationic MPs and -0.5-1.5 for anionic MPs, whereas the reduced TFN-CDP exhibits log KD values of -0.5-1.5 for cationic MPs and 2-4 for anionic MPs, with especially high affinity towards anionic PFASs. Kinetic studies of the removal of 10 anionic PFASs at environmentally relevant concentrations showed 80-98 % removal of all contaminants after 30 min and was superior to commercial granular activated carbon. These findings demonstrate the scope and tunability of CD-based adsorbents derived from a single polymerization and the promise of novel adsorbents constructed from molecular receptors.

8.
J Am Chem Soc ; 140(40): 12677-12681, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256633

RESUMO

Per- and polyfluorinated alkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and ammonium perfluoro-2-propoxypropionate (GenX), contaminate ground and surface waters throughout the world. The cost and performance limitations of current PFAS removal technologies motivate efforts to develop selective and high-affinity adsorbents. Covalent organic frameworks (COFs) are unexplored yet promising adsorbents because of their high surface area and tunable pore sizes. Here we show that imine-linked two-dimensional (2D) COFs bearing primary amines adsorb GenX rapidly at environmentally relevant concentrations. COFs with partial amine incorporation showed the highest capacity and fastest removal, suggesting that the synergistic combination of the polar group and hydrophobic surfaces are responsible for GenX binding. A COF with 28% amine loading also removed more than 90% of 12 out of 13 PFAS. These results demonstrate the promise of COFs for PFAS removal and suggest design criteria for maximizing adsorbent performance.

9.
J Am Chem Soc ; 139(23): 7689-7692, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28558203

RESUMO

Per- and poly fluorinated alkyl substances (PFASs), notably perfluorooctanoic acid (PFOA), contaminate many ground and surface waters and are environmentally persistent. The performance limitations of existing remediation methods motivate efforts to develop effective adsorbents. Here we report a ß-cyclodextrin (ß-CD)-based polymer network with higher affinity for PFOA compared to powdered activated carbon, along with comparable capacity and kinetics. The ß-CD polymer reduces PFOA concentrations from 1 µg L-1 to <10 ng L-1, at least 7 times lower than the 2016 U.S. EPA advisory level (70 ng L-1), and was regenerated and reused multiple times by washing with MeOH. The performance of the polymer is unaffected by humic acid, a component of natural organic matter that fouls activated carbons. These results are promising for treating PFOA-contaminated water and demonstrate the versatility of ß-CD-based adsorbents.


Assuntos
Caprilatos/química , Fluorocarbonos/química , Polímeros/química , Poluentes Químicos da Água/química , beta-Ciclodextrinas/química , Estrutura Molecular
10.
Environ Sci Technol ; 51(13): 7590-7598, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28556664

RESUMO

The cost-effective and energy-efficient removal of organic micropollutants (MPs) from water and wastewater is challenging. The objective of this research was to evaluate the performance of porous ß-cyclodextrin polymers (P-CDP) as adsorbents of MPs in aquatic matrixes. Adsorption kinetics and MP removal were measured in batch and flow-through experiments for a mixture of 83 MPs at environmentally relevant concentrations (1 µg L-1) and across gradients of pH, ionic strength, and natural organic matter (NOM) concentrations. Performance was benchmarked against a coconut-shell activated carbon (CCAC). Data reveal pseudo-second-order rate constants for most MPs ranging between 1.5 and 40 g mg-1 min-1 for CCAC and 30 and 40000 g mg-1 min-1 for P-CDP. The extent of MP removal demonstrates slower but more uniform uptake on CCAC and faster but more selective uptake on P-CDP. Increasing ionic strength and the presence of NOM had a negative effect on the adsorption of MPs to CCAC but had almost no effect on adsorption of MPs to P-CDP. P-CDP performed particularly well for positively charged MPs and neutral or negatively charged MPs with McGowan volumes greater than 1.7 (cm3 mol-1)/100. These data highlight advantages of P-CDP adsorbents relevant to MP removal during water and wastewater treatment.


Assuntos
Benchmarking , Poluentes Químicos da Água/análise , Purificação da Água , beta-Ciclodextrinas/análise , Adsorção , Polímeros , Eliminação de Resíduos Líquidos
11.
Curr Microbiol ; 72(4): 410-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26693724

RESUMO

Many researchers have suggested that microbes can accelerate the weathering of silicate minerals. However, many genes and metabolic pathways related to microorganisms obtaining potassium (K) from silicate remain undiscovered. It is feasible to detect the gene expression within the scope of the whole genome through high-throughput sequencing. Surprisingly, only a few reports have shown fungal weathering of silicate using this technology. This study explored differences in gene expression of Aspergillus nidulans, which was cultured with different K sources, KCl, and K-feldspar. A. nidulans RNA was extracted by the construction of a cDNA library. Identification of K-acquisition-related genes with GO and KEGG pathway analysis revealed that primarily differentially expressed genes were related to the biosynthesis of amino acids. When these genes were grouped in accordance with the physiological functions, the genes involved in the synthesis of protease, ribosome, and mitochondria, trans-membrane transport, and oxidative phosphorylation were significantly different. Moreover, 20 genes selected were further tested using RT-qPCR. One half (10 genes) exhibited differential expression, which was consistent with the results of RNA-seq. Combining the results of RNA-seq and RT-qPCR, we summarised a possible way to obtain mineral K in A. nidulans as well. The differentially expressed genes and their associated metabolic pathways revealed will improve the understanding of the molecular mechanisms of microbial weathering of silicate minerals.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Transcriptoma , Biologia Computacional/métodos , Ontologia Genética , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Potássio/metabolismo , Reprodutibilidade dos Testes
12.
J Am Chem Soc ; 137(6): 2175-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25635355

RESUMO

A molecular rotor built with a stator formed by two rigid 9ß-mestranol units having a 90° bent angle linked to a central phenylene rotator has an ideal structure to examine aromatic CH/π interactions. Energies and populations of the multiple solution conformations from quantum-mechanical calculations and molecular dynamics simulations were combined with variable-temperature (VT) (1)H NMR data to establish the enthalpy of this interaction and the entropy associated with rotation about a single bond. Rotational dynamics in the solid state were determined via VT cross-polarization magic-angle spinning (13)C NMR spectroscopy.

13.
Water Sci Technol ; 70(4): 664-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116496

RESUMO

The adsorption of hexavalent chromium (Cr(VI)) was improved by using organic bentonite (OB) modified with iron(III) chloride. The adsorption mechanisms and characteristics of OB and organic bentonite modified by FeCl3 (FMOB) were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy (EDS). It was found that hydroxyl-iron replaced some of the calcium and magnesium contained in the FMOB, but no significant change in its structure was shown even though the adsorption experiments proved that FMOB had a better Cr(VI) adsorption ability compared to OB. The coated material was prepared by mixing FMOB and 4A molecular sieves in a coated pot for the adsorption experiments in the test column. The relevant results showed that the adsorption of the coated material retained its high adsorption ability and maintained that ability after desorption and regeneration, which implied a potential for further application.


Assuntos
Bentonita/química , Cloretos/química , Cromo/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos/métodos , Difração de Raios X
14.
Front Microbiol ; 15: 1328965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328421

RESUMO

Saltmarsh is widely recognized as a blue carbon ecosystem with great carbon storage potential. Yet soil respiration with a major contributor of atmospheric CO2 can offset its carbon sink function. Up to date, mechanisms ruling CO2 emissions from saltmarsh soil remain unclear. In particular, the effect of precipitation on soil CO2 emissions is unclear in coastal wetlands, due the lack of outdoor data in real situations. We conducted a 7-year field manipulation experiment in a saltmarsh in the Yellow River Delta, China. Soil respiration in five treatments (-60%, -40%, +0%, +40%, and + 60% of precipitation) was measured in the field. Topsoils from the last 3 years (2019-2021) were analyzed for CO2 production potential by microcosm experiments. Furthermore, quality and quantity of soil organic carbon and microbial function were tested. Results show that only the moderate precipitation rise of +40% induced a 66.2% increase of CO2 production potential for the microcosm experiments, whereas other data showed a weak impact. Consistently, soil respiration was also found to be strongest at +40%. The CO2 production potential is positively correlated with soil organic carbon, including carbon quantity and quality. But microbial diversity did not show any positive response to precipitation sizes. r-/K-strategy seemed to be a plausible explanation for biological factors. Overall, our finding reveal that a moderate precipitation increase, not decrease or a robust increase, in a saltmarsh is likely to improve soil organic carbon quality and quantity, and bacterial oligotroph:copiotroph ratio, ultimately leading to an enhanced CO2 production.

15.
Bioresour Technol ; 387: 129589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532062

RESUMO

Understanding the source of methane (CH4) is of great significance for improving the anaerobic fermentation efficiency in bioengineering, and for mitigating the emission potential of natural ecosystems. Microbes involved in the process named direct interspecies electron transfer coupling with CO2 reduction, i.e., electrons released from electroactive bacteria to reduce CO2 into CH4, have attracted considerable attention for wastewater treatment in the past decade. However, how the synergistic effect of microbiota contributes to this anaerobic carbon metabolism accompanied by CH4 production still remains poorly understood, especial for wastewater with antibiotic exposure. Results show that enhancing lower-abundant acetoclastic methanogens and acetogenic bacteria, rather than electroactive bacteria, contributed to CH4 production, based on a metagenome-assembled genomes network analysis. Natural and artificial isotope tracing of CH4 further confirmed that CH4 mainly originated from acetoclastic methanogenesis. These findings reveal the contribution of direct acetate cleavage (acetoclastic methanogenesis) and provide insightsfor further regulation of methanogenic strategies.


Assuntos
Euryarchaeota , Microbiota , Elétrons , Isótopos de Carbono , Dióxido de Carbono/metabolismo , Bactérias/metabolismo , Acetatos , Anaerobiose , Euryarchaeota/metabolismo , Metano/metabolismo
17.
J Hazard Mater ; 421: 126718, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339986

RESUMO

Para-Nitrophenol (p-nitrophenol) is a common industrial pollutant occurring widely in water bodies, yet actual monitoring methods are limited. Herein we proposed a fully electrochemically in situ synthesized graphene-polyarginine composite functionalized screen printed electrode, as a novel p-nitrophenol sensing platform. The electrode was characterized by morphologic, spectrometric and electrochemical techniques. p-nitrophenol in both pure aqueous solution and real water samples was tested. Results show a detection limit as low as the nanomolar level, and display a linear response and high selectivity in the range of 0.5-1250 µM. Molecular simulation reveals a detailed synergy between graphene and poly-arginine. The preferable orientation of nitrophenol molecules on the graphene interface in the presence of poly-arginine induces H- and ionic binding. This sensor is an ideal prototype for p-nitrophenol quantification in real waters.


Assuntos
Grafite , Arginina , Técnicas Eletroquímicas , Eletrodos , Nitrofenóis
18.
Chemosphere ; 287(Pt 3): 132277, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826938

RESUMO

Microbial fuel cells (MFCs) are sensitive to acidity variations in both bioelectricity generation and biochemical digestion aspects, therefore online pH monitoring is of necessity to guarantee optimal function of MFCs. Present pH meters hardly fulfill this special need. In this work, we designed a novel voltammetric pH sensor based on electrochemically reduced graphene oxide (rGO) modified screen printed electrode. By surface doping of alizarin, good linearity of pH sensing over the range of 4.0-9.0 can be realized. Fast readout can be acquired within 15 s for each test. pH monitoring for artificial wastewater with inoculum of granular activated sludge in a MFC was successfully illustrated. Specially, it was verified that the performance was improved with alizarin doping due to the enhanced rGO surface proton diffusion. This approach provides an online, calibration-free and long stable pH monitoring method for the future MFC development.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Nanocompostos , Antraquinonas , Eletrodos , Concentração de Íons de Hidrogênio
19.
Sci Total Environ ; 837: 155855, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561913

RESUMO

Although salinization is widely known to affect cycling of soil carbon (C) in tidal freshwater wetlands, the role of the presence or absence of plants in mediating the responses of soil organic carbon (SOC) mineralization to salinization is poorly understood. In this study, we translocated soils collected from a tidal freshwater wetland to sites with varying salinities along a subtropical estuarine gradient and established unplanted and planted (with the salt-tolerant plant Cyperus malaccensis Lam.) mesocosms at each site. We simultaneously investigated cumulative soil CO2 emissions, C-acquiring enzyme activities, availability of labile organic C (LOC), and structures of bacterial and fungal communities. Overall, in the planted mesocosm, the soil LOC content and the activities of ß-1,4-glucosidase, cellobiohydrolase, phenol oxidase, and peroxidase increased with salinization. However, in the unplanted mesocosm, soil LOC content decreased with increasing salinity, whereas all the C-acquiring enzyme activities did not change. In addition, salinization favored the dominance of bacterial and fungal copiotrophs (e.g., γ-Proteobacteria, Bacteroidetes, Firmicutes, and Ascomycota) in the planted mesocosms. Contrarily, in the unplanted mesocosms salinization favored bacterial and fungal oligotrophs (e.g., α-Proteobacteria, Chloroflexi, Acidobacteria, and Basidiomycota). In both planted and unplanted mesocosms, cumulative soil CO2 emissions were affected by soil LOC content, activities of C-acquiring enzymes, and microbial C-use trophic strategies. Overall, cumulative soil CO2 emissions increased by 35% with increasing salinity in the planted mesocosm but decreased by 37% as salinity increased in the unplanted mesocosm. Our results demonstrate that the presence or absence of salt-tolerant plants can moderate the effect of salinity on SOC mineralization in tidal wetland soils. Future C prediction models should embed both planted and unplanted modules to accurately simulate cycling of soil C in tidal wetlands under sea level rise.


Assuntos
Solo , Áreas Alagadas , Bactérias , Carbono , Dióxido de Carbono , Salinidade , Plantas Tolerantes a Sal , Solo/química
20.
Chemosphere ; 286(Pt 3): 131943, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426266

RESUMO

The wide use of chloramphenicol and its residues in the environments are an increasing threat to human beings. Electroactive microorganisms were proven with the ability of biodegradation of chloramphenicol, but the removal rate and efficiency need to be improved. In this study, a model electricigens, Geobacter metallireducens, was supplied with and Fe3O4 and MnO2 nanoparticles. Five times higher chloramphenicol removal rate (0.71 d-1) and two times higher chloramphenicol removal efficiency (100%) was achieved. Fe3O4 and MnO2 nanoparticles highly increased the current density and NADH-quinone oxidoreductase expression. Fe3O4 nanoparticles enhanced the expression of alcohol dehydrogenase and c-type cytochrome, while MnO2 nanoparticles increased the transcription of pyruvate dehydrogenase and Type IV pili assembly genes. Chloramphenicol was reduced to a type of dichlorination reducing product named CPD3 which is a benzene ring containing compound. Collectively, Fe3O4 and MnO2 nanoparticles increased the chloramphenicol removal capacity in MFCs by enhancing electron transfer efficiency. This study provides new enhancing strategies for the bioremediation of chloramphenicol in the environments.


Assuntos
Geobacter , Nanopartículas Metálicas , Cloranfenicol , Geobacter/genética , Humanos , Compostos de Manganês , Oxirredução , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA