Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 38(7): 3401-3416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666397

RESUMO

Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.


Assuntos
Ferroptose , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Rutina , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Ferroptose/efeitos dos fármacos , Rutina/farmacologia , Camundongos , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Malondialdeído/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo
2.
Inflamm Res ; 72(10-11): 1941-1955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735250

RESUMO

OBJECTIVE: GTP cyclohydrolase 1(GCH1) was reported to protect against ferroptosis. However, it is not clear whether GCH1 reduced lipopolysaccharide (LPS)-induced macrophage polarization and inflammation by inhibition of ferroptosis. METHODS: Bioinformatics analysis was used to screen differential expression genes (DEGs) and obtain the different pathways and biological features. Lasso cox regression analysis with ferroptosis related DEGs was established to screen the most relevant genes for disease risk. LPS induced Raw264.7 macrophage polarization model and GCH1-specific siRNA oligos transfection were performed to confirm the function of GCH1. Immunofluorescence staining, western blot and quantitative real-time PCR were performed to detect the expression of iNOS, CD206, GCH1, IL6, SLC2A6, F4/80, IL1ß, TNFα, IL10, GPX4, ACSL4, AMPK and p-AMPK in macrophages. The levels of ROS, SOD, MDA and GSH were detected according to the instructions of the reagent kit, respectively. RESULTS: 542 DEGs were screened from GSE40885 microarray. GO and KEGG pathway enrichment analysis showed that the upregulated DEGs induced by LPS in alveolar macrophage were closely associated with inflammatory and immune responses, the downregulated DEGs were related to lipid metabolism, insulin resistance and AMPK signal pathway. Lasso cox regression analysis screened GCH1, IL6, and SLC2A6. Our experimental results showed that the expression of GCH1 and IL6 in the LPS group was higher than that in the control group, but there was no difference in the expression of SLC2A6. Bioinformatics analysis with GSE112720 observed that ferroptosis was enriched in GCHfl/fl + LPS group compared with GCHfl/flTie2cre + LPS group and GCHfl/fl + control group. Silence of GCH1 increased the levels of IL6, TNF-α and IL-1ß and decreased IL10 level. Silence of GCH1 increased iNOS level and decreased CD206 level. Moreover, silence of GCH1 raised ferroptosis induced by LPS in macrophages and suppressed the activity of AMPK pathway. CONCLUSIONS: GCH1 inhibited ferroptosis in LPS-stimulated macrophages, reduced macrophage toward to M1 polarization and inflammatory response.


Assuntos
Ferroptose , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Interleucina-6 , Proteínas Quinases Ativadas por AMP , Interleucina-10 , Fator de Necrose Tumoral alfa/metabolismo , Inflamação
3.
Cell Biol Int ; 46(12): 2185-2197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116109

RESUMO

Exosomes (Exo) originated from bone marrow mesenchymal stem cells (BMSCs) have therapeutic impacts on osteonecrosis of the femoral head (ONFH), and microRNA (miR)-532-5p has been confirmed to participate in ONFH progression. In the research, it was figured out whether BMSCs-Exo could relieve ONFH by delivering miR-532-5p. MG-63 cells were treated with DEX to construct an ONFH cell model in vitro. The effects of Exo and miR-532-5p on the cell viability, lactate dehydrogenase (LDH) content, and apoptosis of BMSCs were detected. The ONFH rat model was established, and the effect of BMSCs-Exo delivering miR-532-5p on the pathological damage of ONFH rats was evaluated. Changes in nuclear receptor coactivator-3 (NCOA3) and apoptotic proteins were assessed by western blot. The relationship between miR-532-5p and NCOA3 was verified by dual luciferase reporter experiments. miR-532-5p was elevated in vivo and in vitro ONFH-models, while NCOA3 expression was reduced. Overexpression of miR-532-5p aggravated DEX toxicity in osteoblasts, decreased cell viability, and promoted apoptosis. Knockdown of miR-532-5p made Exo further attenuate the toxic effect of DEX on osteoblasts and inhibited apoptosis. The protective effect of miR-532-5p-delivering Exo on osteoblasts was reversed by NCOA3 silencing. In addition, in vivo experiments also confirmed that knockdown of miR-532-5p enhanced the therapeutic effect of Exo on ONFH rats. This study demonstrates that miR-532-5p-delivering BMSCs-Exo inhibits osteoblast viability and promote apoptosis by targeting NCOA3, thereby aggravating ONFH development.


Assuntos
Exossomos , Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Exossomos/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Cabeça do Fêmur/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Necrose da Cabeça do Fêmur/metabolismo
4.
Drug Dev Res ; 83(8): 1845-1857, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207817

RESUMO

Phytoestrogens are a class of potential natural medicines for treating postmenopausal osteoporosis (PMOP). Segetalin B (SB) is a cyclic peptide compound showing estrogenic activity. This study reports the effect of SB on bone formation among ovariectomized (OVX) rats. The bone marrow mesenchymal stem cells (BMSCs) from OVX rats were cultured in vitro. Alizarin Red staining was utilized to observe the effect of SB on the mineralization of BMSCs. The levels of alkaline phosphatase (ALP), osteocalcin, bone morphogenetic protein (BMP-2), and Sirtuin 1 (SIRT1) activities were detected. The OVX rats were treated with SB in vivo. Micro-CT was utilized for imaging analysis. Urine calcium and phosphorus, and ALP activity in bone marrow were assayed. Western blot analysis and immunofluorescence were incorporated to detect protein expressions in vitro and in vivo. The results showed that SB dose-dependently promoted mineralization of OVX rat-derived BMSCs in vitro increased the level of Osteocalcin, BMP-2, ALP, and SIRT1 activity. Moreover, it upregulated expressions of Runx2, Osterix, and SIRT1, downregulated expressions of Notch intracellular domain (NICD), acetyl-NICD, and hairy and enhancer of split 1 (Hes1). In addition, SB treatment significantly decreased bone loss, inhibited calcium and phosphorus loss, elevated ALP activity, upregulated Runx2, Osterix, and SIRT1, and downregulated NICD and Hes1 in OVX rats in vivo. However, EX527, a SIRT1-selective inhibitor, could reverse the above effects of SB in vitro or in vivo. These results indicate that SB is a potential natural medicine to improve PMOP. Thus, its mechanism of promoting bone formation involves the SIRT1/Notch1 signaling axis.


Assuntos
Osteogênese , Peptídeos Cíclicos , Receptor Notch1 , Sirtuína 1 , Animais , Ratos , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteocalcina/metabolismo , Peptídeos Cíclicos/farmacologia , Fósforo/metabolismo , Receptor Notch1/metabolismo , Sirtuína 1/metabolismo
5.
Plant Biotechnol J ; 17(7): 1357-1368, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30575284

RESUMO

To prevent vaccine-associated paralytic poliomyelitis, WHO recommended withdrawal of Oral Polio Vaccine (Serotype-2) and a single dose of Inactivated Poliovirus Vaccine (IPV). IPV however is expensive, requires cold chain, injections and offers limited intestinal mucosal immunity, essential to prevent polio reinfection in countries with open sewer system. To date, there is no virus-free and cold chain-free polio vaccine capable of inducing robust mucosal immunity. We report here a novel low-cost, cold chain/poliovirus-free, booster vaccine using poliovirus capsid protein (VP1, conserved in all serotypes) fused with cholera non-toxic B subunit (CTB) expressed in lettuce chloroplasts. PCR using unique primer sets confirmed site-specific integration of CTB-VP1 transgene cassettes. Absence of the native chloroplast genome in Southern blots confirmed homoplasmy. Codon optimization of the VP1 coding sequence enhanced its expression 9-15-fold in chloroplasts. GM1-ganglioside receptor-binding ELISA confirmed pentamer assembly of CTB-VP1 fusion protein, fulfilling a key requirement for oral antigen delivery through gut epithelium. Transmission Electron Microscope images and hydrodynamic radius analysis confirmed VP1-VLPs of 22.3 nm size. Mice primed with IPV and boosted three times with lyophilized plant cells expressing CTB-VP1co, formulated with plant-derived oral adjuvants, enhanced VP1-specific IgG1, VP1-IgA titres and neutralization (80%-100% seropositivity of Sabin-1, 2, 3). In contrast, IPV single dose resulted in <50% VP1-IgG1 and negligible VP1-IgA titres, poor neutralization and seropositivity (<20%, <40% Sabin 1,2). Mice orally boosted with CTB-VP1co, without IPV priming, failed to produce any protective neutralizing antibody. Because global population is receiving IPV single dose, booster vaccine free of poliovirus or cold chain offers a timely low-cost solution to eradicate polio.


Assuntos
Cloroplastos/metabolismo , Lactuca/metabolismo , Poliomielite/prevenção & controle , Vacina Antipólio Oral/biossíntese , Poliovirus , Refrigeração , Animais , Anticorpos Antivirais/sangue , Feminino , Imunização Secundária , Camundongos , Testes de Neutralização , Plantas Geneticamente Modificadas , Sorogrupo
6.
J Org Chem ; 84(16): 9859-9868, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31347845

RESUMO

An atom-economical and practical method for the efficient synthesis of various pyrazino[1,2-a]indole-2-oxides was developed through a nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine in water without using an organic solvent. The reaction involved an initial condensation of 2-carbonyl-1-propargylindoles with hydroxylamine to afford oxime intermediates, which then underwent a nickel(II)-catalyzed 6-exo-dig cyclization. Preliminary studies showed that (n-Bu)4NI served as a phase transfer catalyst and promoted the formation of active nickel(II) species. More importantly, the nickel(II) salt and phase transfer catalyst-in-water could be recycled seven times, and a gram scalable product was easily obtained in good yields through a filtration and washing protocol.

7.
Exp Cell Res ; 369(2): 304-315, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29856990

RESUMO

BACKGROUND: CDK8 is associated with the transcriptional Mediator complex and has been shown to regulate several transcription factors implicated in cancer. As a pancreatic cancer oncogene, the role of CDK8 in cancer angiogenesis remains unclear. Here, we investigated the contribution of CDK8 in pancreatic cancer angiogenesis and examined the underlying molecular mechanisms. METHODS: CDK8 expression was evaluated via immunohistochemistry, western blotting, and qRT-PCR in relation to the clinicopathological characteristics of pancreatic cancer patients. The effects of silencing or overexpressing CDK8 on cancer angiogenesis were assessed in vitro by western blotting assays in pancreatic cancer cell lines and in vivo with nude mice xenograft models. RESULTS: Compared with adjacent normal tissues, pancreatic cancer tissues showed upregulation of CDK8 expression, which was inversely correlated with T grade, liver metastasis, size, lymph node metastasis and poor survival. CDK8 overexpression promoted angiogenesis in pancreatic cancer via activation of the CDK8-ß-catenin-KLF2 signaling axis, as demonstrated by the upregulation and downregulation of signals representing the rate-limiting steps in angiogenesis. Silencing CDK8 inhibited angiogenesis in pancreatic cancer in vitro. Additionally, these results were confirmed in nude mice xenograft models in vivo. CONCLUSIONS: CDK8 promotes angiogenesis in pancreatic cancer via activation of the CDK8-ß-catenin-KLF2 signaling axis, thus providing valid targets for the treatment of pancreatic cancer.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , beta Catenina/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/genética , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Regulação para Cima , beta Catenina/antagonistas & inibidores , beta Catenina/genética
8.
Exp Cell Res ; 368(1): 24-36, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654741

RESUMO

The human rhomboid family-1 gene (RHBDF1) is an oncogene in breast and head and neck squamous cancers. Here, we show that RHBDF1 plays a significant role in colorectal cancer (CRC) formation and that the RHBDF1 expression level is higher in CRC than in corresponding normal tissues. Moreover, RHBDF1 promotes cell proliferation, invasion and migration in vitro. Furthermore, through overexpression and silencing of RHBDF1 and the mediator complex, our study demonstrates that RHBDF1 may positively regulate adenomatous polyposis coli (APC) in the Wnt/ß-catenin signalling pathway to increase the expression levels of MMP-14 and Twist, which act as important epithelial-to-mesenchymal transition (EMT) stimulating factors. Additionally, RHBDF1 may regulate c-myc and CyclinD1 expression to influence cell proliferation. Finally, RHBDF1 overexpression and silencing influence CRC growth in BALB/c nude mice. In summary, our findings demonstrate that the regulatory effects of RHBDF1 on EMT and on cell proliferation are partially attributable to the Wnt/ß-catenin signalling pathway.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , beta Catenina/metabolismo
9.
J Mater Sci Mater Med ; 29(11): 162, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357538

RESUMO

There is an increasing clinical need to design dental restorative materials that combine excellent mechanical property and anti-biofilm activity. In the current study, photocurable polycation functionalized nanodiamond (QND) was synthesized and proposed as novel filler for dental resins. By reason of increased repulsive force between nanoparticles and enhanced compatibility with resin matrix, QND dispersed uniformly in reinforced resins, which would help to transfer stress and deformation from the matrix to fillers more efficiently, resulting in a significant improvement in mechanical properties. Notably, the Vickers's hardness, flexural strength and flexural modulus of resins containing 1.0 wt% QND were 44.5, 36.1 and 41.3% higher than that of control, respectively. The antibacterial activity against Streptococcus mutans (S. mutans) showed that QND-incorporated resins produced anti-adhesive property due to their hydrophilic surfaces and could suppress bacterial growth as a result of the contact-killing effect of embedded nanocomposites. As the synergistic effect of anti-adhesive and bactericidal performance, resins loading 1.0~1.5 wt% QNDs displayed excellent anti-biofilm activity. Meanwhile, the results of macrophage cytotoxicity showed that the proliferation of RAW 264.7 cells remained 84.3%, even at a concentration of 1.0 wt% QNDs after 7-day incubation. Therefore, the QND-containing dental resin with the combination of high mechanical property, bacteria-repellent capability and antibacterial performance holds great potential as a restorative material based on this scheme.


Assuntos
Biofilmes/efeitos dos fármacos , Materiais Dentários , Nanodiamantes/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Mecânica , Camundongos , Células RAW 264.7 , Streptococcus mutans/efeitos dos fármacos
10.
J Mater Sci Mater Med ; 28(7): 103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534286

RESUMO

Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag+ ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag+ ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag+ ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.


Assuntos
Brometos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Cura Luminosa de Adesivos Dentários/métodos , Nanocápsulas/administração & dosagem , Nanocompostos/administração & dosagem , Resinas Sintéticas/síntese química , Compostos de Prata/administração & dosagem , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/efeitos da radiação , Brometos/química , Brometos/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/efeitos da radiação , Difusão , Combinação de Medicamentos , Dureza/efeitos dos fármacos , Luz , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Nanocápsulas/ultraestrutura , Nanocompostos/química , Nanocompostos/efeitos da radiação , Poliaminas/química , Poliaminas/efeitos da radiação , Polieletrólitos , Resinas Sintéticas/administração & dosagem , Resinas Sintéticas/efeitos da radiação , Compostos de Prata/química , Compostos de Prata/efeitos da radiação
11.
Plant Biotechnol J ; 14(11): 2190-2200, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27155248

RESUMO

The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed.


Assuntos
Cloroplastos/imunologia , Vacina Antipólio Oral/imunologia , Doenças Transmissíveis , Humanos , Agricultura Molecular , Vacinação
12.
Inflammation ; 46(5): 1684-1696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37219694

RESUMO

Matrine is a Sophora alkaloid that exerts antitumor effects on a variety of diseases, but few studies have investigated the role of matrine in sepsis-induced myocardial injury. In the present study, we investigated the effects of matrine on septic myocardial injury and the potential mechanisms. Network pharmacology approaches were used to predict the targets of matrine in the treatment of sepsis-induced myocardial injury. A mouse sepsis-induced myocardial injury model was established to determine the effect of matrine. Mouse cardiac function was evaluated by ultrasonography, and cardiac morphology and cardiomyocyte apoptosis were evaluated by HE and TUNEL staining. Oxidative stress was assessed by measuring ROS levels and MDA and SOD activity. Bax, Bcl2, GPX4, ACSL4, PI3K, and AKT protein levels were evaluated by immunohistochemical staining and western blotting. Bioinformatics analysis identified that the potential therapeutic effect of matrine on sepsis-induced myocardial injury is closely related to ferroptosis and apoptosis regulation and showed significant involvement of the PI3K/AKT signaling pathway. In vivo, the matrine group showed improved myocardial function, morphology, and apoptosis ratio and alleviated oxidative stress compared with the LPS group, whereas 25 mg/kg matrine exerted the optimal inhibitory effect. Matrine alleviated LPS-induced cardiomyocyte ferroptosis and apoptosis, resulting in upregulation of Bax/Bcl2 and GPX4 expression and downregulation of ferroptosis marker protein (ACSL4) expression, as shown by immunohistochemistry and western blotting. Moreover, matrine increased PI3K/AKT pathway-related molecule expression and thus modulated ferroptosis and apoptosis. Matrine regulates PI3K/AKT pathway activity to inhibit apoptosis and ferroptosis and thereby alleviates sepsis-induced myocardial injury.


Assuntos
Ferroptose , Traumatismos Cardíacos , Sepse , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Matrinas , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Proteína X Associada a bcl-2 , Apoptose , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
13.
Front Physiol ; 14: 1113853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994421

RESUMO

Background: The success of embryo transfer cycle depends mainly on the quality of embryo and endometrial receptivity. Ultrasound examination is still the most widely used non-invasive evaluation method for its advantages of convenience, non-invasiveness and repeatability. Ultrasound-measured endometrial blood flow is one of the important evaluation indicators of morphology. Aims: To investigate the effect of the number of endometrial blood flow branches on pregnancy outcome of frozen-thawed embryo transfer cycles which have undergoing hormone replacement therapy (HRT-FET). Material and methods: A retrospective cohort study was performed looking at a total of 1390 HRT-FET cycles from our reproductive medicine center between January 2017 to December 2021, which transferred one blastocyst frozen on day 5 with good quality in morphology. Associations between endometrial blood flow branches and pregnancy outcomes were evaluated with multivariable linear regression analysis. Results: The number of endometrial blood flow branches was independently associated with clinical pregnancy (OR 1.10; 95% CI 1.02-1.20). After adjusting for potential confounders, the effect size (odds ratio) was 1.09 (95% CI 1.00-1.19), and the results showed that the clinical pregnancy rate and live birth rate of T2 and T3 groups were significantly higher than those in group T1 (p < 0.05). Subgroup analysis showed that a consistent association between the endometrial blood flow branches and clinical pregnancy in all subgroups. Conclusion: Our study provided evidence for the influence of endometrial blood flow on pregnancy outcomes. There may be an independent association between the number of endometrial blood flow branches and pregnancy outcomes in frozen-thawed single blastocyst transfer cycles.

14.
Front Physiol ; 14: 1326060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074331

RESUMO

[This corrects the article DOI: 10.3389/fphys.2023.1113853.].

15.
Nanoscale ; 15(10): 4991-5000, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36786677

RESUMO

The bimetallic 2D conductive MOFs of M1Pc-M2-O, possessing dual metal sites to realize flexible molecular-level structural modification, are brilliant catalysts for electrochemical CO2 reduction. However, the bimetallic centers bring about the complex regulatory mechanism of catalytic activity and obscure principles for catalyst design. Herein, systematical theoretical investigation unravels intrinsic descriptors to design favorable M1Pc-M2-O catalysts based on the discovered coarse-fine two-stage activity regulation mechanism. The reaction site controls the M-COOH distance of the key intermediate and therefore affects the reaction kinetics for the first stage of coarse regulation. The other metal site influents the d-band center of the reaction site and thus constitutes the second stage of fine regulation. The coarse and fine regulation are related to the valence electrons (V), electronegativity (E), and bond length (LM-N/O) between the metal and coordination atoms. The intrinsic descriptor ϕ = (4 × VM1 × (EM1 + EN/O)/EN/O + VM2 × (EM2 + EN/O)/EN/O) × LM1-N/O (with a coefficient ratio of 4 : 1) was eventually established and correlated well with the reported experiments. On this basis, the favorable catalysts CoPc-Zn-O and CoPc-Co-O were located. The research results could contribute to the diversity of bimetallic 2D c-MOFs in CO2RR.

16.
Mater Today Bio ; 18: 100506, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36471892

RESUMO

Mussels can form tough and long-lasting adhesions to organic and inorganic surfaces in saline and impactive severe aquatic environments. Similar to mussel adhesion, dentin bonding occurs in a wet environment. However, unlike mussels, it is difficult to achieve long-lasting bonds with dentin. Moreover, water is considered a major hindrance in dentin bonding. Inspired by the synergistic effect of cationic lysine (Lys) and catechol on the elimination of the hydration layer during mussel adhesion, a catechol- and Lys-functionalized polymerizable polymer (catechol-Lys-methacrylate [CLM]) was synthesized to replicate the complex synergy between amino acids and catechol. The bond-promoting potential of 5 â€‹mg/mL CLM primer was confirmed using an in vitro wet dentin-bonding model, which was characterized by an improvement in bond strength and durability. CLM can adhere to wet demineralized dentin, with Lys acting as a molecular vanguard to expel water. Subsequently, a myriad of interfacial interactions can be obtained by introducing the catechol group into the interface. Additionally, tough and long-lasting adhesion, similar to that formed by mussels, can be achieved by grafting CLM onto type I collagen via covalent bonds, hydrogen bonds, Van der Waals interactions, and cation-π interactions, which can enhance the mechanical and chemical stability of collagen, increase the enzymatic resistance of collagen, and provide additional physical/chemical adhesion to dentin bonds. Catechol- and cationic Lys-functionalized polymers can improve the stability of the resin-dentin interface under wet conditions.

17.
Int J Womens Health ; 15: 1835-1844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035202

RESUMO

Aim: To compare the pregnancy outcomes of frozen-thawed embryo transfer (FET) cycles among women with repeated implantation failure (RIF) treated with various endometrial preparation protocols. Methods: A total of 605 women with RIF were retrospectively recruited between January 2017 and December 2020 from Northern Theater General Hospital. Patients were divided into natural cycles, hormone replacement therapy (HRT) cycles, depot gonadotropin-releasing hormone (GnRH) agonist-HRT, and endometrial scratching (ES) plus depot GnRH agonist-HRT. The primary endpoint was clinical pregnancy rate, while secondary endpoints included live birth rate and pain assessment. Results: Of the 605 recruited patients, 63 were undergoing natural cycles, 281 were treated with HRT cycles, 141 treated with depot GnRH agonist-HRT, and 120 treated with ES combined with depot GnRH agonist-HRT. There were significant differences among protocols on clinical pregnancy rate (P=0.029), while no significant difference was observed among protocols on live birth rates (P=0.108). Multivariate analyses suggested that HRT (odds ratio [OR]: 0.50; 95% confidence interval [CI]: 0.28-0.89; P=0.019) and depot GnRH agonist-HRT (OR: 0.49; 95% CI: 0.27-0.91; P=0.021) cycles were associated with a lower clinical pregnancy rate as compared with natural cycles, while no significant difference between ES combined with depot GnRH agonist-HRT and natural cycles for clinical pregnancy rates (OR: 0.72; 95% CI: 0.38-1.36; P=0.313). Moreover, the HRT (OR: 0.70; 95% CI: 0.39-1.28; P=0.239), depot GnRH agonist-HRT (OR: 0.67; 95% CI: 0.35-1.29; P=0.229), and ES combined with depot GnRH agonist-HRT (OR: 1.11; 95% CI: 0.58-2.14; P=0.754) cycles had no significant effects on live birth rate as compared with natural cycles. A total of 87.50% patients treated with ES combined with depot GnRH agonist-HRT reported pain during the procedure. Conclusion: ES and depot GnRH agonists could be considered for RIF women with high-quality blastocysts, 14 days after verified transplantation failure.

18.
Antiviral Res ; 211: 105520, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603771

RESUMO

Molluscum contagiosum (MC) is an infectious disease that occurs only in humans with a tropism that is narrowly restricted to the outermost epidermal layer of the skin. Molluscum contagiosum virus (MCV) is the causative agent of MC which produces skin lesions that can persist for months to several years. MCV is efficiently transmitted by direct physical contact or by indirect contact with fomites. MC is most prevalent in children and immune compromised patients. The failure to develop a drug that targets MCV replication has been hampered for decades by the inability to propagate MCV in cell culture. To address this dilemma, we recently engineered a surrogate poxvirus expressing the MCV processivity factor (mD4) as the drug target. The mD4 protein is essential for viral replication by keeping the viral polymerase tethered to the DNA template. In this study we have designed and synthesized a lead compound (7269) that is able to prevent mD4 dependent processive DNA synthesis in vitro (IC50 = 6.8 µM) and effectively inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells (EC50 = 13.2 µM) with negligible cytotoxicity. In human liver microsomes, 7269 was shown to be stable for almost 2 h. When tested for penetration into human cadaver skin in a formulated gel, the level of 7269 in the epidermal layer was nearly 100 times the concentration (EC50) needed to inhibit propagation of the mD4-VV surrogate virus in BSC-1 cells. The gel formulated 7269 was scored as a non-irritant on skin and shown to have a shelf-life that was completely stable after several months. In summary, 7269 is a potential Lead for becoming the first MCV anti-viral compound to treat MC and thereby, addresses this unmet medical need that has persisted for many decades.


Assuntos
Molusco Contagioso , Vírus do Molusco Contagioso , Criança , Humanos , Vírus do Molusco Contagioso/genética , Vírus do Molusco Contagioso/metabolismo , Proteínas Virais/genética , DNA/metabolismo
19.
J Virol ; 85(6): 2547-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191012

RESUMO

Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.


Assuntos
Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Modelos Animais de Doenças , Feminino , Deleção de Genes , Camundongos , Pele/patologia , Pele/virologia , Linfócitos T/imunologia , Carga Viral , Proteínas Virais/genética , Fatores de Virulência/genética
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(9): 2576-8, 2012 Sep.
Artigo em Zh | MEDLINE | ID: mdl-23240442

RESUMO

Heavy metal contents in railway rock-cut slope soil have directly influenced ecosystem on rock-cut slope and eco-envi- ronment safety of farmland nearby. In the study heavy metal Pb, Cd, Zn, Cu and Mn was determined by AAS in railway rock-cut slope and control soil samples on Cheng-Da Railway crossing purple soil in Sichuan province. The results showed that Pb and Mn were significantly higher in rock-cut soil than in control soil, that is 29.7%-35.4%, while Cd, Zn and Cu were similar in both soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA