Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Extremophiles ; 28(2): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598094

RESUMO

Alginate is an important polysaccharide that is abundant in the marine environments, including the Polar Regions, and bacterial alginate lyases play key roles in its degradation. Many reported alginate lyases show characteristics of cold-adapted enzymes, including relatively low temperature optimum of activities (Topt) and low thermal stabilities. However, the cold-adaption mechanisms of alginate lyases remain unclear. Here, we studied the cold-adaptation mechanisms of alginate lyases by comparing four members of the PL7 family from different environments: AlyC3 from the Arctic ocean (Psychromonas sp. C-3), AlyA1 from the temperate ocean (Zobellia galactanivorans), PA1167 from the human pathogen (Pseudomonas aeruginosa PAO1), and AlyQ from the tropic ocean (Persicobacter sp. CCB-QB2). Sequence comparison and comparative molecular dynamics (MD) simulations revealed two main strategies of cold adaptation. First, the Arctic AlyC3 and temperate AlyA1 increased the flexibility of the loops close to the catalytic center by introducing insertions at these loops. Second, the Arctic AlyC3 increased the electrostatic attractions with the negatively charged substrate by introducing a high portion of positively charged lysine at three of the insertions mentioned above. Furthermore, our study also revealed that the root mean square fluctuation (RMSF) increased greatly when the temperature was increased to Topt or higher, suggesting the RMSF increase temperature as a potential indicator of the cold adaptation level of the PL7 family. This study provided new insights into the cold-adaptation mechanisms of bacterial alginate lyases and the marine carbon cycling at low temperatures.


Assuntos
Alginatos , Simulação de Dinâmica Molecular , Humanos , Bacteroidetes , Carbono , Catálise
2.
Phys Chem Chem Phys ; 26(22): 16378-16387, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38805360

RESUMO

Nonlinear optical (NLO) materials are of great importance in modern optics and industry because of their intrinsic capability of wavelength conversion. Bandgap is a key property of NLO crystals. In recent years, machine learning (ML) has become a powerful tool to predict the bandgaps of compounds before synthesis. However, the shortage of available experimental data of NLO crystals poses a significant challenge for the exploration of new NLO materials using ML. In this work, we proposed a new multi-fidelity ML approach based on the multilevel descriptors developed by us (Z.-Y. Zhang, X. Liu, L. Shen, L. Chen and W.-H. Fang, J. Phys. Chem. C, 2021, 125, 25175-25188) and the gradient boosting regression tree algorithm. The calculated and experimental bandgaps of NLO crystals were collected as the low- and high-fidelity labels, respectively. The experimental values were predicted based on chemical compositions of crystals without prior knowledge about crystal structures. The multi-fidelity ML model overcame the performance of single-fidelity predictor. Furthermore, it was observed that less accurate predictions on the low-fidelity label may result in more accurate prediction on the high-fidelity label, at least in the present case. Using the multi-fidelity ML model with the best performance in this work, the mean absolute error on the test set of experimental bandgaps was 0.293 eV, which is smaller than that using the single-fidelity model (0.355 eV). It is far from perfect but accurate enough as an effective computational tool in the first step to discover novel NLO materials.

3.
J Phys Chem A ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954640

RESUMO

Machine learning is capable of effectively predicting the potential energies of molecules in the presence of high-quality data sets. Its application in the construction of ground- and excited-state potential energy surfaces is attractive to accelerate nonadiabatic molecular dynamics simulations of photochemical reactions. Because of the huge computational cost of excited-state electronic structure calculations, the construction of a high-quality data set becomes a bottleneck. In the present work, we first built two data sets. One was obtained from surface hopping dynamics simulations at the semiempirical OM2/MRCI level. Another was extracted from the dynamics trajectories at the CASSCF level, which was reported previously. The ground- and excited-state potential energy surfaces of ethylene-bridged azobenzene at the CASSCF computational level were constructed based on the former low-level data set. Although non-neural network machine learning methods can achieve good or modest performance during the training process, only neural network models provide reliable predictions on the latter external test data set. The BPNN and SchNet combined with the Δ-ML scheme and the force term in the loss functions are recommended for dynamics simulations. Then, we performed excited-state dynamics simulations of the photoisomerization of ethylene-bridged azobenzene on machine learning potential energy surfaces. Compared with the lifetimes of the first excited state (S1) estimated at different computational levels, our results on the E isomer are in good agreement with the high-level estimation. However, the overestimation of the Z isomer is unimproved. It suggests that smaller errors during the training process do not necessarily translate to more accurate predictions on high-level potential energies or better performance on nonadiabatic dynamics simulations, at least in the present case.

4.
Environ Monit Assess ; 196(2): 134, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200391

RESUMO

How to evaluate the change characteristics of energy carbon emissions (ECE) and vegetation carbon absorption (VCA) by scientific methods is particularly important for achieving carbon peak by 2030 and carbon neutrality by 2060. Based on provincial-level energy consumption data, nighttime light data, and population data, this study realized spatial simulation of energy carbon emissions and analyzed the change characteristics of energy carbon emissions (ECE) and vegetation carbon absorption (VCA) combined with the net primary productivity (NPP)of vegetation. Besides, the relationship between energy carbon emissions, vegetation carbon absorption, and economic development was also analyzed at an urban scale. The results showed that (1) the total ECE increased from 4.34 billion tons in 2000 to 14.43 billion tons in 2019, but the growth rate of ECE decreased from 15.9% during 2000-2010 to 3.1% during 2010-2019. The VCA capacity has been increasing year by year. In 2019, it could absorb 1.56 billion tons more carbon dioxide than in 2000 with an increase of 16.1%. (2) Through the identification of the increasing and decreasing regions of ECE and VCA, it was found that the continuous rise area of ECE accounts for 0.5% of the study area; the area of fluctuating rise accounted for 6.7% of the study area. The area of continuous decline of VCA accounted for 0.2% of the study area; the area of fluctuating decline accounted for 49.6% of the study area. (3) The eastern China accounted for 42% of ECE and 17% of VCA with 11.4% of land, while the western region accounted for 26% of ECE and 55% of VCA with 66.6% of land, which indicated that there were significant differences in the characteristics of carbon budget between the eastern China and the western region. (4) The carbon pressure index (CPI) of most cities was on the rise, but the carbon efficiency index (CEI) was also on the rise, and cities were developing towards the model of low energy consumption and high output value. In a word, the growth rate of ECE is slowing down, and the VCA capacity is increasing. In the process of promoting carbon neutrality, we should be aware of the different resource endowments of different regions, realize the actual role of each region in carbon neutrality and economic development, and allocate carbon neutrality tasks differently.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , China , Cidades , Desenvolvimento Econômico
5.
Environ Monit Assess ; 196(2): 193, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265493

RESUMO

In the background of the greenhouse effect, drought events occurred more frequently. How to monitor drought events scientifically and efficiently is very urgent at present. In this study, we employed the Vegetation Water Supply Index (VSWI), Temperature Vegetation Drought Index (TVDI), and Crop Water Stress Index (CWSI) as individual variables to construct a composite drought index (CDI) using spatial principal component analysis (SPCA). The validity of CDI was assessed using gross primary productivity (GPP), soil moisture (SM), Standardized Precipitation Evapotranspiration Index (SPEI), and Vegetation Condition Index (VCI). CDI was subsequently used for drought monitoring in northern China from 2011 to 2020. The results showed that (1) at a 99% confidence level, the Pearson correlation coefficients between CDI and GPP was 0.72, while the value between CDI and SM was 0.69, which indicated the relationship between SM, GPP, and CDI was significant. (2) We compared CDI with other variables such as Standardized Precipitation Evapotranspiration Index (SPEI) and Crop Drought Index (CDI) and found that the monitoring result of CDI was more sensitive, which indicated that the proposed CDI had a better effect in local drought monitoring. (3) The results of CDI showed that the drought status in the northern region during 2011-2020 lasted from March to October, and the high severe drought period generally occurs in March-May and September-October, with low severe drought in June-August.


Assuntos
Secas , Monitoramento Ambiental , Análise de Componente Principal , China , Efeito Estufa , Solo
6.
Environ Monit Assess ; 196(3): 311, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409508

RESUMO

Carbon emissions from land use change have become one of the main sources of regional carbon emissions. In order to explore the changes, 87 districts and counties in Gansu Province are taken as research objects. Based on the remote sensing data and statistical data of land use, the carbon emission coefficient method was used to investigate the spatial characteristics of land use carbon emission of each district and county in Gansu Province in recent 20 years from the perspective of carbon ecological support coefficient and per capita carbon footprint. The main results are as follows: (1) the growth of land use carbon emissions in Gansu Province from 2000 to 2020 was significant, but the growth of carbon emissions after 2010 was fast, and the growth of carbon sinks was relatively slow. (2) The ecological support coefficient of carbon emissions at county level in Gansu Province showed a trend of high in the south and low in the north, high in the east and low in the west, and this trend became more and more obvious with the passage of time. (3) Based on carbon emission, county population, and carbon ecological support capacity, the per capita carbon footprint of each county in Gansu Province was analyzed. The results showed that the per capita carbon footprint in Gansu Province was increasing, indicating that the gap between carbon emission and carbon absorption in each county was widening. By the above result, the author divides the counties of Gansu Province into three regions, low-carbon maintenance area, green development area, and ecological optimization area, and puts forward development suggestions for different regions, respectively. Therefore, this paper can also provide a theoretical reference for the formulation of carbon neutral planning measures in inland northwest China.


Assuntos
Carbono , Monitoramento Ambiental , Pegada de Carbono , China/epidemiologia , Sequestro de Carbono , Desenvolvimento Econômico , Dióxido de Carbono
7.
Small ; 19(45): e2302629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431237

RESUMO

Tailor-made carbonaceous-based cathodes with zincophilicity and hydrophilicity are highly desirable for Zn-ion storage applications, but it remains a great challenge to achieve both advantages in the synthesis. In this work, a template electrospinning strategy is developed to synthesize nitrogen and phosphorous co-doped hollow porous carbon nanofibers (N, P-HPCNFs), which deliver a high capacity of 230.7 mAh g-1 at 0.2 A g-1 , superior rate capability of 131.0 mAh g-1 at 20 A g-1 , and a maximum energy density of 196.10 Wh kg-1 at the power density of 155.53 W kg-1 . Density functional theory calculations (DFT) reveal that the introduced P dopants regulate the distribution of local charge density of carbon materials and therefore facilitate the adsorption of Zn ions due to the increased electronegativity of pyridinic-N. Ab initio molecular dynamics (AIMD) simulations indicate that the doped P species induce a series of polar sites and create a hydrophilic microenvironment, which decreases the impedance between the electrode and the electrolyte and therefore accelerates the reaction kinetics. The marriage of ex situ/in situ experimental analyses and theoretical simulations uncovers the origin of the enhanced zincophilicity and hydrophilicity of N, P-HPCNFs for energy storage, which accounts for the faster ion migration and electrochemical processes.

8.
Trop Med Int Health ; 28(7): 551-561, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230481

RESUMO

OBJECTIVES: Scrub typhus is an increasingly serious public health problem, which is becoming the most common vector-borne disease in Guangzhou. This study aimed to analyse the correlation between scrub typhus incidence and potential factors and rank the importance of influential factors. METHODS: We collected monthly scrub typhus cases, meteorological variables, rodent density (RD), Normalised Difference Vegetation Index (NDVI), and land use type in Guangzhou from 2006 to 2019. Correlation analysis and a random forest model were used to identify the risk factors for scrub typhus and predict the importance rank of influencing factors related to scrub typhus incidence. RESULTS: The epidemiological results of the scrub typhus cases in Guangzhou between 2006 and 2019 showed that the incidence rate was on the rise. The results of correlation analysis revealed that a positive relationship between scrub typhus incidence and meteorological factors of mean temperature (Tmean ), accumulative rainfall (RF), relative humidity (RH), sunshine hours (SH), and NDVI, RD, population density, and green land coverage area (all p < 0.001). Additionally, we tested the relationship between the incidence of scrub typhus and the lagging meteorological factors through cross-correlation function, and found that incidence was positively correlated with 1-month lag Tmean , 2-month lag RF, 2-month lag RH, and 6-month lag SH (all p < 0.001). Based on the random forest model, we found that the Tmean was the most important predictor among the influential factors, followed by NDVI. CONCLUSIONS: Meteorological factors, NDVI, RD, and land use type jointly affect the incidence of scrub typhus in Guangzhou. Our results provide a better understanding of the influential factors correlated with scrub typus, which can improve our capacity for biological monitoring and help public health authorities to formulate disease control strategies.


Assuntos
Tifo por Ácaros , Humanos , Tifo por Ácaros/epidemiologia , Algoritmo Florestas Aleatórias , Temperatura , China/epidemiologia , Fatores de Risco , Incidência
9.
J Chem Inf Model ; 63(15): 4679-4690, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489739

RESUMO

The contradictory behaviors in light harvesting and non-photochemical quenching make xanthophyll lutein the most attractive functional molecule in photosynthesis. Despite several theoretical simulations on the spectral properties and excited-state dynamics, the atomic-level photophysical mechanisms need to be further studied and established, especially for an accurate description of geometric and electronic structures of conical intersections for the lowest several electronic states of lutein. In the present work, semiempirical OM2/MRCI and multi-configurational restricted active space self-consistent field methods were performed to optimize the minima and conical intersections in and between the 1Ag-, 2Ag-, 1Bu+, and 1Bu- states. Meanwhile, the relative energies were refined by MS-CASPT2(10,8)/6-31G*, which can reproduce correct electronic state properties as those in the spectroscopic experiments. Based on the above calculation results, we proposed a possible excited-state relaxation mechanism for lutein from its initially populated 1Bu+ state. Once excited to the optically bright 1Bu+ state, the system will propagate along the key reaction coordinate, i.e., the stretching vibration of the conjugated carbon chain. During this period of time, the 1Bu- state will participate in and forms a resonance state between the 1Bu- and 1Bu+ states. Later, the system will rapidly hop to the 2Ag- state via the 1Bu+/2Ag- conical intersection. Finally, the lutein molecule will survive in the 2Ag- state for a relatively long time before it internally converts to the ground state directly or via a twisted S1/S0 conical intersection. Notably, though the photophysical picture may be very different in solvents and proteins, the current theoretical study proposed a promising calculation protocol and also provided many valuable mechanistic insights for lutein and similar carotenoids.

10.
Phys Chem Chem Phys ; 25(11): 7669-7680, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857660

RESUMO

The excited-state properties and photophysics of cytosine aza-analogues, i.e., 2,4-diamino-1,3,5-triazine (2,4-DT) and 2-amino-1,3,5-triazine (2-AT) in solution have been systematically explored using the QM(MS-CASPT2//CASSCF)/MM approach. The excited-state nonradiative relaxation mechanisms for the initially photoexcited S1(ππ*) state decay back to the S0 state are proposed in terms of the present computed minima, surface crossings (conical intersections and singlet-triplet crossings), and excited-state decay paths in the S1, S2, T1, T2, and S0 states. Upon photoexcitation to the bright S1(ππ*) state, 2,4-DT quickly relaxes to its S1 minimum and then overcomes a small energy barrier of 5.1 kcal mol-1 to approach a S1/S0 conical intersection, where the S1 system hops to the S0 state through S1 → S0 internal conversion (IC). In addition, at the S1 minimum, the system could partially undergo intersystem crossing (ISC) to the T1 state, followed by further ISC to the S0 state via the T1/S0 crossing point. In the T1 state, an energy barrier of 7.9 kcal mol-1 will trap 2,4-DT for a while. In parallel, for 2-AT, the system first relaxes to the S1 minimum and then S1 → S0 IC or S1 → T1 → S0 ISCs take place to the S0 state by surmounting a large barrier of 15.3 kcal mol-1 or 11.9 kcal mol-1, respectively, which heavily suppress electronic transition to the S0 state. Different from 2,4-DT, upon photoexcitation in the Franck-Condon region, 2-AT can quickly evolve in an essentially barrierless manner to nearby S2/S1 conical intersection, where the S2 and T1 states can be populated. Once it hops to the S2 state, the system will overcome a relatively small barrier (6.6 kcal mol-1vs. 15.3 kcal mol-1) through IC to the S0 state. Similarly, an energy barrier of 11.9 kcal mol-1 heavily suppresses the T1 state transformation to the S0 state. The present work manifests that the amination/deamination of the triazine rings can affect some degree of different vertical and adiabatic excitation energies and nonradiative decay pathways in solution. It not only rationalizes excited-state decay dynamics of 2,4-DT and 2-AT in aqueous solution but could also provide insights into the understanding of the photophysics of aza-nucleobases.

11.
Phys Chem Chem Phys ; 25(38): 26258-26269, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37743787

RESUMO

The excited state properties and deactivation pathways of two DNA methylation inhibitors, i.e., 5-azacytidine (5ACyd) and 2'-deoxy-5-azacytidine (5AdCyd) in aqueous solution, are comprehensively explored with the QM(CASPT2//CASSCF)/MM protocol. We systematically map the feasible decay mechanisms based on the obtained excited-state decay paths involving all the identified minimum-energy structures, conical intersections, and crossing points driving the different internal conversion (IC) and intersystem crossing (ISC) routes in and between the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states. Unlike the 1nπ* state below the 1ππ* state in 5ACyd, deoxyribose group substitution at the N1 position leads to the 1ππ* state becoming the S1 state in 5AdCyd. In 5ACyd and 5AdCyd, the initially populated 1ππ* state mainly deactivates to the S0 state through the direct 1ππ* → S0 IC or mediated by the 1nπ* state. The former nearly barrierless IC channel of 1ππ* → S0 occurs ultrafast via the nearby low-lying 1ππ*/S0 conical intersection. In the latter IC channel of 1ππ* → 1nπ* → S0, the initially photoexcited 1ππ* state first approaches the nearby S2/S1 conical section 1ππ*/1nπ* and then undergoes efficient IC to the 1nπ* state, followed by the further IC to the initial S0 state via the S1/S0 conical intersection 1nπ*/S0. The 1nπ*/S0 conical intersection is estimated to be located 6.0 and 4.9 kcal mol-1 above the 1nπ* state minimum in 5ACyd and 5AdCyd, respectively, at the QM(CASPT2)/MM level. In addition to the efficient singlet-mediated IC channels, the minor ISC routes would populate 1ππ* to T1(ππ*) through 1ππ* → T1 or 1ππ* → 1nπ* → T1. Relatively, the 1ππ* → 1nπ* → T1 route benefits from the spin-orbit coupling (SOC) of 1nπ*/3ππ* of 8.7 cm-1 in 5ACyd and 10.2 cm-1 in 5AdCyd, respectively. Subsequently, the T1 system will approach the nearby T1/S0 crossing point 3ππ*/S0 driving it back to the S0 state. Given the 3ππ*/S0 crossing point located above the T1 minimum and the small T1/S0 SOC, i.e., 8.4 kcal mol-1 and 2.1 cm-1 in 5ACyd and 6.8 kcal mol-1 and 1.9 cm-1 in 5AdCyd, respectively, the slow T1 → S0 would trap the system in the T1 state for a while. The present work could contribute to understanding the mechanistic photophysics and photochemistry of similar aza-nucleosides and their derivatives.

12.
Angew Chem Int Ed Engl ; 62(42): e202310970, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37644643

RESUMO

The large-scale applicability of Zn-metal anodes is severely impeded by the issues such as the dendrite growth, complicated hydrogen evolution, and uncontrollable passivation reaction. Herein, a negatively charged carboxylated double-network hydrogel electrolyte (Gelatin/Sodium alginate-acetate, denoted as Gel/SA-acetate) has been developed to stabilize the interfacial electrochemistry, which restructures a type of Zn2+ ion solvent sheath optimized via a chain-liquid synergistic effect. New hydrogen bonds are reconstructed with water molecules by the zincophilic functional groups, and directional migration of hydrated Zn2+ ions is therefore induced. Concomitantly, the robust chemical bonding of such hydrogel layers to the Zn slab exhibits a desirable anti-catalytic effect, thereby greatly diminishing the water activity and eliminating side reactions. Subsequently, a symmetric cell using the Gel/SA-acetate electrolyte demonstrates a reversible plating/stripping performance for 1580 h, and an asymmetric cell reaches a state-of-the-art runtime of 5600 h with a high average Coulombic efficiency of 99.9 %. The resultant zinc ion hybrid capacitors deliver exceptional properties including the capacity retention of 98.5 % over 15000 cycles, energy density of 236.8 Wh kg-1 , and high mechanical adaptability. This work is expected to pave a new avenue for the development of novel hydrogel electrolytes towards safe and stable Zn anodes.

13.
Angew Chem Int Ed Engl ; 62(10): e202218872, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647214

RESUMO

Highly reversible plating/stripping in aqueous electrolytes is one of the critical processes determining the performance of Zn-ion batteries, but it is severely impeded by the parasitic side reaction and dendrite growth. Herein, a novel electrolyte engineering strategy is first proposed based on the usage of 100 mM xylitol additive, which inhibits hydrogen evolution reaction and accelerates cations migration by expelling active H2 O molecules and weakening electrostatic interaction through oriented reconstruction of hydrogen bonds. Concomitantly, xylitol molecules are preferentially adsorbed by Zn surface, which provides a shielding buffer layer to retard the sedimentation and suppress the planar diffusion of Zn2+ ions. Zn2+ transference number and cycling lifespan of Zn∥Zn cells have been significantly elevated, overwhelmingly larger than bare ZnSO4 . The cell coupled with a NaV3 O8 cathode still behaves much better than the additive-free device in terms of capacity retention.

14.
Anal Chem ; 94(43): 14994-15001, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263663

RESUMO

The i-motif structure (iM) has attracted much attention, because of its in vivo bioactivity and wide in vitro applications such as DNA-based switches. Herein, the length-dependent folding of cytosine-rich repeats of the human telomeric 5'-(CCCTAA)n-1CCC-3' (iM-n, where n = 2-8) was fully explored. We found that iM-4, iM-5, and iM-8 mainly form the intramolecular monomer iM structures, while a tetramolecular structure populates only for iM-3. However, iM-6 and iM-7 have the potential to fold as well into the dimeric iM structures besides the monomer ones. The natural hypericin (Hyp) was used as the polymorphism-selective probe to recognize the iM structures. Interestingly, only iM-3, iM-6, and iM-7 can efficiently switch on the Hyp fluorescence by specifically binding with the outmost C-C+ base pairs that are exposed directly to solution. However, other iM structures that fold in a way with a coverage of the outmost C-C+ pairs by loop sequences are totally unavailable for the Hyp binding. Theoretical modeling indicates that adaptive π-π and cation-π interactions contribute to the Hyp recognition toward the exposed C-C+ pairs. This specific iM recognition can be boosted by a photocatalytic DNAzyme construct. Our work provides a reliable fluorescence method to selectively explore the polymorphism of iM structures.


Assuntos
DNA , Telômero , Humanos , Conformação de Ácido Nucleico , Pareamento de Bases , Telômero/genética , DNA/genética , DNA/química , Citosina/química
15.
Phys Chem Chem Phys ; 24(45): 27793-27803, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349893

RESUMO

In this work, we have used the QM(CASPT2//CASSCF)/MM approach to study the photophysical properties and relaxation mechanism of 5-azacytosine (5-AC) in aqueous solution. Based on the relevant minimum-energy structures and intersection structures, and excited-state decay paths in the S1, S2, T1, T2, and S0 states, several feasible excited-state nonradiative decay channels from the initially populated S2(ππ*) state are proposed. Two major channels are singlet-mediated nonradiative pathways, in which the S2 system will internally convert (IC) to the S0 state directly or mediated by the 1nπ* state via a 1ππ*/1nπ* conical intersection. The minor ones are related to intersystem crossing (ISC) processes. The system would populate to the T1 state via the S2 → S1 → T1 or S2 → T2 → T1 ISC process, followed by further decay to the S0 state via the transition from T1 to S0. However, due to small spin-orbit couplings (SOCs) at the singlet-triplet crossing points, the related ISC would be less efficient and probably take longer. The present work rationalizes the ultrafast excited-state decay dynamics of 5-AC in aqueous solution and its low quantum yields of triplets and fluorescence. It provides important mechanistic insights into understanding 5-AC's derivatives and analogues.


Assuntos
Citosina , Teoria Quântica , Água
16.
Phys Chem Chem Phys ; 24(30): 18427-18434, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35881619

RESUMO

Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.


Assuntos
Aminas , Prótons , Aminas/química , Butilaminas , Etanol , Cinética , Metanol , Dióxido de Nitrogênio
17.
Phys Chem Chem Phys ; 25(1): 402-409, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477748

RESUMO

8-Hydroxy-5-nitroquinoline (NO2-QN-OH) is an antimicrobial, anti-inflammatory and anticancer agent, and has been approved for use in the treatment of diseases. Its photosensitivity, however, cannot be overlooked. The photochemistry of 8-hydroxy-5-nitroquinoline in acetonitrile is investigated using transient absorption and time-resolved resonance Raman spectroscopies. By identifying the short-lived intermediates during the photoreaction, it is clear that the Tn state NO2-QN-OH is generated in 0.8 ps via an ultrafast ISC, followed by the IC in 8.5 ps to produce the T1 state. In neat acetonitrile, the T1 state NO2-QN-OH undergoes intramolecular proton transfer and tautomerizes to form T1 state NO2-QNH-O. To our knowledge, this is the first time that the intramolecular excited state proton transfer of hydroxyl-quinolines in an aprotic polar solvent is observed.


Assuntos
Dióxido de Nitrogênio , Prótons , Análise Espectral Raman , Solventes/química
18.
Phys Chem Chem Phys ; 24(34): 20517-20529, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993921

RESUMO

The excited-state decay (ESD) and proton transfer (EPT) of p-nitrophenylphenol (NO2-Bp-OH), especially in the triplet states, were not characterized with high-level theoretical methods to date. Herein, the MS-CASPT2//CASSCF and QM(MS-CASPT2//CASSCF)/MM methods were employed to gain an atomic-level understanding of the ESD and EPT of NO2-Bp-OH in the gas phase and its hydrogen-bonded complex in methanol. Our calculation results revealed that the S1 and S2 states of NO2-Bp-OH are of 1ππ* and 1nπ* characters at the Franck-Condon (FC) point, which correspond to the ICT-EPT and intramolecular charge-transfer (ICT) states in spectroscopic experiments. The former state has a charge-transfer property that could facilitate the EPT reaction, while the latter one might be unfavorable for EPT. The vertical excitation energies of these states are almost degenerate at the FC region and the electronic configurations of 1ππ* and 1nπ* will exchange from the S1 FC region to the S1 minimum, which means that the 1nπ* state will participate in ESD once NO2-Bp-OH departs from the S1 FC region. Besides, we found that three triplets lie below the first bright state and will play very important roles in intersystem crossing processes. In terms of several pivotal surface crossings and relevant linearly interpolated internal coordinate (LIIC) paths, three feasible but competing ESD channels that could effectively lead the system to the ground state or the lowest triplet state were put forward. Once arrived at the T1 state, the system has enough time and internal energy to undergo the EPT reaction. The methanol solvent has a certain effect on the relative energies and spin-orbit couplings, but does not qualitatively change the ESD processes of NO2-Bp-OH. By contrast, the solvent effects will remarkably stabilize the proton-transferred product by the hydrogen bond networks and assist to form the triplet anion. Our present work would pave the road to properly understand the mechanistic photochemistry of similar hydroxyaromatic compounds.

19.
Phys Chem Chem Phys ; 24(48): 29918-29926, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468632

RESUMO

Photocyclization and photoisomerization of fulgides have been extensively studied experimentally and computationally due to their significant potential applications for example as photoswitches in memory devices. However, the reported excited-state decay mechanisms of fulgides do not include the effects of solvation explicitly to date. Herein, calculations using the high-level MS-CASPT2//CASSCF method were conducted to explore the photoinduced excited-state decay processes of the Eα conformer of a fulgide derivative in toluene with solvent effects treated by implicit PCM and explicit QM/MM models, respectively. Several minima and conical intersections were optimized successfully in and between the S0 and S1 states; then, two nonadiabatic excited-state decay channels that could efficiently drive the system to the ground state were proposed based on the excited-state ring-closure and isomerization paths. In addition, we also found that in the ring-closure path, the potential energy surface is essentially barrierless before approaching the conical intersection, while it needs to overcome a small energy barrier along the E → Z photoisomerization path for the nonadiabatic S1 → S0 internal conversion process. The present computational results could provide useful mechanistic insights into the photoinduced cyclization and isomerization reactions of fulgide and its derivatives.


Assuntos
Tolueno , Ciclização
20.
J Phys Chem A ; 126(11): 1789-1804, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266391

RESUMO

Nonadiabatic dynamics simulation has become a powerful tool to describe nonadiabatic effects involved in photophysical processes and photochemical reactions. In the past decade, our group has developed generalized trajectory-based ab initio surface-hopping (GTSH) dynamics simulation methods, which can be used to describe a series of nonadiabatic processes, such as internal conversion, intersystem crossing, excitation energy transfer and charge transfer of molecular systems, and photoinduced nonadiabatic carrier dynamics of extended systems with and without spin-orbit couplings. In this contribution, we will first give a brief introduction to our recently developed methods and related numerical implementations at different computational levels. Later, we will present some of our latest applications in realistic systems, which cover organic molecules, biological proteins, organometallic compounds, periodic organic and inorganic materials, etc. Final discussion is given to challenges and outlooks of ab initio nonadiabatic dynamics simulations.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA