Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38703096

RESUMO

CONTEXT: Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being. OBJECTIVE: This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China. METHODS: This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS: A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (ß: -1.373--0.016, pFDR: <0.001-0.031; ß: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (ß: 0.023-2.396, pFDR: <0.001; ß: 0.014-1.736, pFDR: <0.001-0.049). CONCLUSION: Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.

2.
Gut Microbes ; 16(1): 2347715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717445

RESUMO

Our recent randomized, placebo-controlled study in Irritable Bowel Syndrome (IBS) patients with diarrhea or alternating bowel habits showed that the probiotic Bifidobacterium longum (BL) NCC3001 improves depression scores and decreases brain emotional reactivity. However, the involved metabolic pathways remain unclear. This analysis aimed to investigate the biochemical pathways underlying the beneficial effects of BL NCC3001 using metabolomic profiling. Patients received probiotic (1x 1010CFU, n=16) or placebo (n=19) daily for 6 weeks. Anxiety and depression were measured using the Hospital Anxiety and Depression Scale. Brain activity in response to negative emotional stimuli was assessed by functional Magnetic Resonance Imaging. Probiotic fecal abundance was quantified by qPCR. Quantitative measurement of specific panels of plasma host-microbial metabolites was performed by mass spectrometry-based metabolomics. Probiotic abundance in feces was associated with improvements in anxiety and depression scores, and a decrease in amygdala activation. The probiotic treatment increased the levels of butyric acid, tryptophan, N-acetyl tryptophan, glycine-conjugated bile acids, and free fatty acids. Butyric acid concentration correlated with lower anxiety and depression scores, and decreased amygdala activation. Furthermore, butyric acid concentration correlated with the probiotic abundance in feces. In patients with non-constipation IBS, improvements in psychological comorbidities and brain emotional reactivity were associated with an increased abundance of BL NCC3001 in feces and specific plasma metabolites, mainly butyric acid. These findings suggest the importance of a probiotic to thrive in the gut and highlight butyric acid as a potential biochemical marker linking microbial metabolism with beneficial effects on the gut-brain axis.


Assuntos
Fezes , Síndrome do Intestino Irritável , Metaboloma , Probióticos , Síndrome do Intestino Irritável/psicologia , Síndrome do Intestino Irritável/microbiologia , Humanos , Probióticos/administração & dosagem , Masculino , Adulto , Feminino , Fezes/microbiologia , Fezes/química , Pessoa de Meia-Idade , Depressão , Ansiedade , Bifidobacterium longum , Microbioma Gastrointestinal , Metabolômica , Comorbidade
3.
Front Pharmacol ; 15: 1424940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040472

RESUMO

Background: Porcine bile powder (PBP) is a traditional Chinese medicine that has been used for centuries in various therapeutic applications. However, PBP has not previously undergone comprehensive component analysis and not been evaluated for safety through standard in vivo toxicological studies. Methods: In our study, we characterized the component of PBP by liquid chromatography-mass spectrometry. The acute and subchronic oral toxicity, genotoxicity, and teratogenicity studies of PBP were designed and conducted in Kunming mice and Sprague-Dawley (SD) rats. Results: The chemical analysis of PBP showed that the main components of PBP were bile acids (BAs), especially glycochenodeoxycholic acid. There were no signs of toxicity observed in the acute oral test and the subchronic test. In the genotoxicity tests, no positive results were observed in the bacterial reverse mutation test. Additionally, in the mammalian micronucleus test and mouse spermatocyte chromosomal aberration test, no abnormal chromosomes were observed. In the teratogenicity test, no abnormal fetal development was observed. Conclusion: Our findings demonstrate that PBP, composed mainly of BAs, is non-toxic and safe based on the conditions tested in this study.

4.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697101

RESUMO

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Assuntos
Envelhecimento , Amônia , Ácidos e Sais Biliares , Disfunção Cognitiva , Absorção Intestinal , Animais , Ácidos e Sais Biliares/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Absorção Intestinal/efeitos dos fármacos , Masculino , Feminino , Humanos , Camundongos , Envelhecimento/metabolismo , Amônia/metabolismo , Idoso , Camundongos Endogâmicos C57BL , Resina de Colestiramina/farmacologia , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Ratos , Idoso de 80 Anos ou mais
5.
Heliyon ; 10(2): e24161, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293489

RESUMO

Background: The aim of this study was to evaluate the accuracy of LiveBoost™, a gradient boosting (GB)-based prediction system based on standard biochemical values (AST, ALT, platelet count) and age, in Chinese patients with chronic hepatitis B (CHB) and compare its performance with FIB-4 (fibrosis-4 score) and APRI (the aspartate transaminase to platelet ratio index). Methods: This retrospective trial enrolled 454 participants, including 279 CHB patients who underwent liver biopsy and 175 normal controls from 3 centers in China. All participants underwent laboratory blood testing. LiveBoost was constructed using GB and FIB-4 and APRI were calculated from laboratory data. Results: LiveBoost outperformed APRI and FIB-4 in predicting hepatic fibrosis and cirrhosis. The GB model had an AUROC of 0.977 for CHB diagnosis, 0.804 for early and advanced fibrosis, and 0.836 for non-cirrhosis and cirrhosis, compared to AUROC of 0.554, 0.673 and 0.720 for FIB-4, AUROC of 0.977, 0.652 and 0.654 for APRI. Conclusions: LiveBoost is a more reliable and cost-effective method than APRI and FIB-4 for assessing liver fibrosis in Chinese patients with CHB.

6.
Nat Commun ; 15(1): 3796, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714706

RESUMO

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Assuntos
Doença de Alzheimer , Amônia , Metabolômica , Fenótipo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Amônia/metabolismo , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Ácidos e Sais Biliares/metabolismo , Idoso de 80 Anos ou mais , Estudos de Coortes
7.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582087

RESUMO

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Assuntos
Depressão , Microbioma Gastrointestinal , Ácido Homovanílico , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Humanos , Ácido Homovanílico/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA