Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337300

RESUMO

To enhance the degradability of poly(butylene adipate-co-terephthalate) (PBAT), reed fiber (RF) was blended with PBAT to create composite materials. In this study, a fifteen day degradation experiment was conducted using four different enzyme solutions containing lipase, cellulase, Proteinase K, and esterase, respectively. The degradation process of the sample films was analyzed using an analytical balance, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The PBAT/RF composites exhibited an increased surface hydrophilicity, which enhanced their degradation capacity. Among all the enzymes tested, lipase had the most significant impact on the degradation rate. The weight loss of PBAT and PBAT/RF, caused by lipase, was approximately 5.63% and 8.17%, respectively. DSC analysis revealed an increase in the melting temperature and crystallinity over time, especially in the film containing reed fibers. FTIR results indicated a significant weakening of the ester bond peak in the samples. Moreover, this article describes a biodegradation study conducted for three months under controlled composting conditions of PBAT and PBAT/RF samples. The results showed that PBAT/RF degraded more easily in compost as compared to PBAT. The lag phase of PBAT/RF was observed to decrease by 23.8%, while the biodegradation rate exhibited an increase of 11.8% over a period of 91 days. SEM analysis demonstrated the formation of more cracks and pores on the surface of PBAT/RF composites during the degradation process. This leads to an increased contact area between the composites and microorganisms, thereby accelerating the degradation of PBAT/RF. This research is significant for preparing highly degradable PBAT composites and improving the application prospects of biodegradable green materials. PBAT/RF composites are devoted to replacing petroleum-based polymer materials with sustainable, natural materials in advanced applications such as constructional design, biomedical application, and eco-environmental packaging.

2.
Carbohydr Polym ; 304: 120502, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641192

RESUMO

Recyclable and degradable supercapacitors have promising applications for a sustainable energy storage industry. Herein, we prepare a dual-physical crosslinking (DP) carboxymethyl cellulose (CMC) hydrogel with high-toughness, healability, and electric conductivity by integrating abundant ions into the matrix. The prepared hydrogel displays a maximum compressive fracture stress of 4.42 MPa, fast healing in five seconds, and full degradation within eight days. Moreover, the fabricated supercapacitor shows high specific capacitance (309 F g-1) and volumetric capacitance (2.60 F cm-3). The supercapacitor achieves a healing efficiency of 93.9 % after five cuttings, and exhibits a cycling stability of 84.6 % capacitance retention after 1000 cycles. These merits ensure that the all-cellulose-based supercapacitor can operate in case of sudden collision and deformation, which contribute to reducing the environmental hazards from supercapacitor's preparation to its abandonment.


Assuntos
Carboximetilcelulose Sódica , Eletrólitos , Celulose , Capacitância Elétrica , Hidrogéis
3.
J Hazard Mater ; 444(Pt A): 130373, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427485

RESUMO

Organophosphate esters (OPEs) are attracting attention because they pose risks to biota, including humans. Little research has been performed into the environmental fates of OPEs in the atmosphere. Here, target/suspect OPEs were determined in 122 atmosphere samples (gas phase (n = 31), PM2.5 (n = 30), PM10 (n = 30), and total suspended particles (n = 31)) from a city in Northern China. Pollution profiles were established, influencing factors identified, and sources apportioned. We found 12 target OPEs and 29 suspect OPEs. The target and suspect OPE concentrations in the ambient air samples were 2.2-172.5 and 0.7-53.9 ng/m3, respectively. Tris(chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, and tris(2,4-di-t-butylphenyl) phosphate were the dominant OPEs in all samples. The OPEs were not in equilibrium, indicated by a multi-parameter linear free energy relationship model. The air quality index and OPE concentrations significantly correlated, indicating that OPE pollution is often more serious during weather with worse air quality. The target and suspect screening strategy and a positive matrix factorization model allowed OPE sources to be apportioned, improving our understanding of OPE sources. The four dominant sources were (1) construction, (2) indoor emissions, (3) the plastic industry and industrial activities, and (4) traffic emissions, textiles, and foam products.


Assuntos
Ar , Poluição Ambiental , Humanos , Fosfatos , China , Organofosfatos
4.
Carbohydr Polym ; 256: 117575, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483070

RESUMO

Chitosan-modified zinc hydroxystannate (ZHS-CS) was synthesized using the cations of the biomaterial chitosan (CS) and ion replacement strategy. A ZHS-CS and reduced graphene oxide (rGO) hybrid flame retardant (ZHS-CS/rGO) was synthesized for use in flexible poly (vinyl chloride) (PVC). Scanning electron microscopy images indicated that ZHS-CS and rGO were evenly dispersed in ZHS-CS/rGO without agglomeration. Fourier transform infrared spectroscopy results showed that rGO was fully reduced. The flame-retardant and mechanical properties of PVC composites were investigated using the limiting oxygen index (LOI), a cone calorimeter, and mechanical equipment. By replacing one-fifth of the zinc ions in ZHS by chitosan cations to obtain Sn-4Zn-1CS/rGO, the ZHS-CS/rGO was found to improve PVC composite performance. The total heat release and total smoke release of PVC/Sn-4Zn-1CS/rGO were reduced by 24.2 and 40.0 %, respectively, from those of pure PVC.


Assuntos
Quitosana/química , Grafite/síntese química , Cloreto de Polivinila/química , Compostos de Estanho/química , Zinco/química , Materiais Biocompatíveis/química , Retardadores de Chama , Grafite/química , Microscopia Eletrônica de Varredura , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Temperatura , Resistência à Tração , Compostos de Zinco , Óxido de Zinco
5.
Polymers (Basel) ; 12(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948015

RESUMO

Metal-organic frameworks (MOFs) have shown great potential in flame retardant applications; however, strategies for fully exploiting the advantages of MOFs in order to further enhance the flame retardant performance are still in high demand. Herein, a novel MOF composite was designed through the generated cooperative role of MOF (NH2-MIL-101(Al)) and a phosphorus-nitrogen-containing ionic liquid ([DPP-NC3bim][PMO]). The ionic liquid (IL) was composed of imidazole cation modified with diphenylphosphinic group (DPP) and phosphomolybdic acid (PMoA) anions, which can trap the degrading polymer radicals and reduce the smoke emission. The MOF acts as a porous host and can avoid the agglomeration of ionic liquid. Meanwhile, the -NH2 groups of NH2-MIL-101(Al) can increase the compatibility with epoxy resin (EP). The framework is expected to act as an efficient insulating barrier to suppress the flame spread. It was demonstrated that the MOF composite (IL@NH2-MIL-101(Al)) is able to effectively improve the fire safety of EP at low additions (3 wt. %). The LOI value of EP/IL@NH2-MIL-101(Al) increased to 29.8%. The cone calorimeter results showed a decreased heat release rate (51.2%), smoke production rate (37.8%), and CO release rate (44.8%) of EP/IL@NH2-MIL-101(Al) with respect to those of neat EP. This strategy can be extended to design other advanced materials for flame retardant.

6.
Sci Rep ; 10(1): 858, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965039

RESUMO

There is growing concern that Cd in soils can be transferred to plants, resulting in phytotoxicity and threats to human health via the food chain. Biochar has been reported to be a soil amendment capable of reducing the bioavailability of metals in soil by electrostatic interactions, ionic exchange and the specific binding of metal ions by surface ligands. To determine the effects of Cd contamination and nanobiochar on the growth characteristics of plants, the dynamics of Cd in soil were explored in Petri dish and pot experiments (0%, 0.2%, 0.5% and 1% nanobiochar), respectively. The diversity, distribution and composition of the bacterial community in treated soil were monitored by high-throughput sequencing. The results showed that the germination potential and height and weight of plants were significantly decreased in Cd-treated soil samples (P < 0.05). The Cd content of Brassica chinensis L. in the treated soil groups was lower than that in the untreated soil groups (P < 0.05) after nanobiochar application. The application of biochar significantly improved the microbial biomass, microorganism abundance and diversity of Actinobacteria and Bacteroidetes in Cd-contaminated soil and reduced the diversity of Proteobacteria, which was relatively more persistent than in the contaminated sites without biochar application. The results of this study provide theoretical and technical support for understanding the environmental behavior of nanopassivators, thus enhancing the role of biochar in the remediation of soil pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA