RESUMO
Back contact silicon solar cells, valued for their aesthetic appeal by removing grid lines on the sunny side, find applications in buildings, vehicles and aircrafts, enabling self-power generation without compromising appearance1-3. Patterning techniques arrange contacts on the shaded side of the silicon wafer, offering benefits for light incidence as well. However, the patterning process complicates production and causes power loss. Here we employ lasers to streamline back contact solar cell fabrication and enhance power conversion efficiency. Our approach produces the first silicon solar cell to exceed 27% efficiency. Hydrogenated amorphous silicon layers are deposited on the wafer for surface passivation and collection of light-generated carriers. A dense passivating contact, diverging from conventional technology practice, is developed. Pulsed picosecond lasers at different wavelengths are used to create back contact patterns. The developed approach is a streamlined process for producing high-performance back contact silicon solar cells, with a total effective processing time of about one-third that of emerging mainstream technology. To meet terawatt demand, we develop rare indium-less cells at 26.5% efficiency and precious silver-free cells at 26.2% efficiency. The integration of solar solutions in buildings and transportation is poised to expand with these technological advancements.
RESUMO
DNA molecules as storage media are characterized by high encoding density and low energy consumption, making DNA storage a highly promising storage method. However, DNA storage has shortcomings, especially when storing multimedia data, wherein image reconstruction fails when address errors occur, resulting in complete data loss. Therefore, we propose a parity encoding and local mean iteration (PELMI) scheme to achieve robust DNA storage of images. The proposed parity encoding scheme satisfies the common biochemical constraints of DNA sequences and the undesired motif content. It addresses varying pixel weights at different positions for binary data, thus optimizing the utilization of Reed-Solomon error correction. Then, through lost and erroneous sequences, data supplementation and local mean iteration are employed to enhance the robustness. The encoding results show that the undesired motif content is reduced by 23%-50% compared with the representative schemes, which improves the sequence stability. PELMI achieves image reconstruction under general errors (insertion, deletion, substitution) and enhances the DNA sequences quality. Especially under 1% error, compared with other advanced encoding schemes, the peak signal-to-noise ratio and the multiscale structure similarity address metric were increased by 10%-13% and 46.8%-122%, respectively, and the mean squared error decreased by 113%-127%. This demonstrates that the reconstructed images had better clarity, fidelity, and similarity in structure, texture, and detail. In summary, PELMI ensures robustness and stability of image storage in DNA and achieves relatively high-quality image reconstruction under general errors.
Assuntos
Algoritmos , DNA , DNA/genética , Processamento de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodosRESUMO
Mitochondria play an integral role in cell death, autophagy, immunity, and inflammation. We previously showed that Nur77, an orphan nuclear receptor, induces apoptosis by targeting mitochondria. Here, we report that celastrol, a potent anti-inflammatory pentacyclic triterpene, binds Nur77 to inhibit inflammation and induce autophagy in a Nur77-dependent manner. Celastrol promotes Nur77 translocation from the nucleus to mitochondria, where it interacts with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase important for inflammatory signaling. The interaction is mediated by an LxxLL motif in TRAF2 and results not only in the inhibition of TRAF2 ubiquitination but also in Lys63-linked Nur77 ubiquitination. Under inflammatory conditions, ubiquitinated Nur77 resides at mitochondria, rendering them sensitive to autophagy, an event involving Nur77 interaction with p62/SQSTM1. Together, our results identify Nur77 as a critical intracellular target for celastrol and unravel a mechanism of Nur77-dependent clearance of inflamed mitochondria to alleviate inflammation.
Assuntos
Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Triterpenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Anti-Inflamatórios/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Transfecção , Triterpenos/metabolismoRESUMO
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Assuntos
DNA , Elementos da Série dos Lantanídeos , Microscopia de Força Atômica , DNA/química , DNA/análise , Humanos , Elementos da Série dos Lantanídeos/química , Raios X , Dano ao DNA , Európio/químicaRESUMO
Growing evidence supports the analgesic efficacy of electroacupuncture (EA) in managing chronic neuropathic pain (NP) in both patients and NP models induced by peripheral nerve injury. However, the underlying mechanisms remain incompletely understood. Ferroptosis, a novel form of programmed cell death, has been found to be activated during NP development, while EA has shown potential in promoting neurological recovery following acute cerebral injury by targeting ferroptosis. In this study, to investigate the detailed mechanism underlying EA intervention on NP, male Sprague-Dawley rats with chronic constriction injury (CCI)-induced NP model received EA treatment at acupoints ST36 and GV20 for 14 days. Results demonstrated that EA effectively attenuated CCI-induced pain hypersensitivity and mitigated neuron damage and loss in the spinal cord of NP rats. Moreover, EA reversed the oxidative stress-mediated spinal ferroptosis phenotype by upregulating reduced expression of xCT, glutathione peroxidase 4 (GPX4), ferritin heavy chain (FTH1) and superoxide dismutase (SOD) levels, and downregulating increased expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), malondialdehyde levels and iron overload. Furthermore, EA increased the immunofluorescence co-staining of GPX4 in neurons cells of the spinal cord of CCI rats. Mechanistic analysis unveiled that the inhibition of antioxidant pathway of Nrf2 signalling via its specific inhibitor, ML385, significantly countered EA's protective effect against neuronal ferroptosis in NP rats while marginally diminishing its analgesic effect. These findings suggest that EA treatment at acupoints ST36 and GV20 may protect against NP by inhibiting neuronal ferroptosis in the spinal cord, partially through the activation of Nrf2 signalling.
Assuntos
Eletroacupuntura , Ferroptose , Neuralgia , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , AnalgésicosRESUMO
Streamline tractography locally traces peak directions extracted from fiber orientation distribution (FOD) functions, lacking global information about the trend of the whole fiber bundle. Therefore, it is prone to producing erroneous tracks while missing true positive connections. In this work, we propose a new bundle-specific tractography (BST) method based on a bundle-specific tractogram distribution (BTD) function, which directly reconstructs the fiber trajectory from the start region to the termination region by incorporating the global information in the fiber bundle mask. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion vectorial field. At the global level, the tractography process is simplified as the estimation of BTD coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) for qualitative and quantitative evaluation. Results demonstrate that our approach reconstructs complex fiber geometry more accurately. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts.
Assuntos
Encéfalo , Conectoma , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologiaRESUMO
Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 µM and 50 µg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis.
RESUMO
BACKGROUND: Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS: The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS: Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION: Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.
Assuntos
Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos Knockout , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/etiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos Endogâmicos C57BL , Sinapses/metabolismo , Sinapses/patologia , Sinapses/efeitos dos fármacos , Hormônios Peptídicos/metabolismo , Pessoa de Meia-Idade , FemininoRESUMO
Heterogeneous membranes play a crucial role in osmotic energy conversion by effectively reducing concentration polarization. However, most heterogeneous membranes mitigate concentration polarization through an asymmetric charge distribution, resulting in compromised ion selectivity. Herein, hetero-nanochannels with asymmetric wettability composed of 2D mesoporous carbon and graphene oxide are constructed. The asymmetric wettability of the membrane endows it with the ability to suppress the concentration polarization without degrading the ion selectivity, as well as achieving a diode-like ion transport feature. As a result, enhanced osmotic energy harvesting is achieved with a power density of 6.41 W m-2 . This represents a substantial enhancement of 102.80-137.85% when compared to homogeneous 2D membranes, surpassing the performance of the majority of reported 2D membranes. Importantly, the membrane can be further used for high-performance ionic power harvesting by regulating ion transport, exceeding previously reported data by 89.1%.
RESUMO
MOTIVATION: Finding molecules with desired pharmaceutical properties is crucial in drug discovery. Generative models can be an efficient tool to find desired molecules through the distribution learned by the model to approximate given training data. Existing generative models (i) do not consider backbone structures (scaffolds), resulting in inefficiency or (ii) need prior patterns for scaffolds, causing bias. Scaffolds are reasonable to use, and it is imperative to design a generative model without any prior scaffold patterns. RESULTS: We propose a generative model-based molecule generator, Sc2Mol, without any prior scaffold patterns. Sc2Mol uses SMILES strings for molecules. It consists of two steps: scaffold generation and scaffold decoration, which are carried out by a variational autoencoder and a transformer, respectively. The two steps are powerful for implementing random molecule generation and scaffold optimization. Our empirical evaluation using drug-like molecule datasets confirmed the success of our model in distribution learning and molecule optimization. Also, our model could automatically learn the rules to transform coarse scaffolds into sophisticated drug candidates. These rules were consistent with those for current lead optimization. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/zhiruiliao/Sc2Mol. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Descoberta de Drogas , Aprendizado de MáquinaRESUMO
PURPOSE: Tractography of the facial nerve based on diffusion MRI is instrumental before surgery for the resection of vestibular schwannoma, but no excellent methods usable for the suppression of motion and image noise have been proposed. The aim of this study was to effectively suppress noise and provide accurate facial nerve reconstruction by extend a fiber trajectory distribution function based on the fourth-order streamline differential equations. METHODS: Preoperative MRI from 33 patients with vestibular schwannoma who underwent surgical resection were utilized in this study. First, T1WI and T2WI were used to obtain mask images and regions of interest. Second, probabilistic tractography was employed to obtain the fibers representing the approximate facial nerve pathway, and these fibers were subsequently translated into orientation information for each voxel. Last, the voxel orientation information and the peaks of the fiber orientation distribution were combined to generate a fiber trajectory distribution function, which was used to parameterize the anatomical information. The parameters were determined by minimizing the cost between the trajectory of fibers and the estimated directions. RESULTS: Qualitative and visual analyses were used to compare facial nerve reconstruction with intraoperative recordings. Compared with other methods (SD_Stream, iFOD1, iFOD2, unscented Kalman filter, parallel transport tractography), the fiber-trajectory-distribution-based tractography provided the most accurate facial nerve reconstructions. CONCLUSION: The fiber-trajectory-distribution-based tractography can effectively suppress the effect of noise. It is a more valuable aid for surgeons before vestibular schwannoma resection, which may ultimately improve the postsurgical patient's outcome.
Assuntos
Imagem de Tensor de Difusão , Nervo Facial , Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/cirurgia , Imagem de Tensor de Difusão/métodos , Nervo Facial/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Cuidados Pré-Operatórios/métodos , Adulto JovemRESUMO
BACKGROUND: Menopause is associated with elevated cardiovascular risk due to the loss of the cardioprotective effect of oestrogens. Postmenopausal women are often prescribed hormone replacement therapy (HRT) in order to control menopause symptoms and correct hormone imbalances; however, HRT can impact serum lipids' concentrations. At present, data on the effect of the administration of medroxyprogesterone acetate plus conjugated equine oestrogens (MPACEE) on the lipid profile in females are uncertain, as the investigations conducted so far have produced conflicting results. Thus, we aimed to clarify the impact of MPACEE prescription on the serum lipids' values in women by means of a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: We employed a random-effects model based on the DerSimonian and Laird method to determine the combined estimates of the intervention's impact on the lipid profile. The computation of the weighted mean difference (WMD) and its corresponding 95% confidence interval (CI) relied on the mean and standard deviation values from both the MPACEE and control group, respectively. RESULTS: A total of 53 RCTs were included in the meta-analysis with 68 RCT arms on total cholesterol (TC), 70 RCT arms on low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and 69 RCT arms on high-density lipoprotein cholesterol (HDL-C). Administration of MPACEE resulted in a significant reduction of TC (WMD = -11.93 mg/dL; 95% CI: -13.42, -10.44; p < .001) and LDL-C (WMD = -16.61 mg/dL; 95% CI: -17.97, -15.26; p < .001) levels, and a notable increase in HDL-C (WMD = 3.40 mg/dL; 95% CI: 2.93, 3.86; p < .001) and TG (WMD = 10.28 mg/dL; 95% CI: 7.92, 12.64; p < .001) concentrations. Subgroup analysis revealed that changes in the lipid profile were influenced by several factors: body mass index (for TC, HDL-C, TG), MPACEE dosages (for TC, LDL-C, HDL-C, TG), age (for TC, LDL-C, HDL-C, TG), durations of the intervention (for TC, LDL-C, HDL-C, TG), continuous/sequential administration of MPACEE (continuous for TC; sequential for LDL-C, TG) administration of MPACEE and serum lipids' concentrations before enrolment in the RCT (for TC, LDL-C, HDL-C, TG). CONCLUSIONS: MPACEE administration can influence serum lipids' concentrations in females by raising HDL-C and TG levels and reducing LDL-C and TC values. Therefore, postmenopausal women who suffer from hypercholesterolaemia might benefit from this type of HRT.
Assuntos
HDL-Colesterol , LDL-Colesterol , Estrogênios Conjugados (USP) , Acetato de Medroxiprogesterona , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos , Feminino , Acetato de Medroxiprogesterona/farmacologia , Acetato de Medroxiprogesterona/administração & dosagem , Humanos , Estrogênios Conjugados (USP)/farmacologia , Estrogênios Conjugados (USP)/administração & dosagem , Triglicerídeos/sangue , HDL-Colesterol/efeitos dos fármacos , HDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , Colesterol/sangue , Lipídeos/sangue , Terapia de Reposição de Estrogênios/métodos , Pós-Menopausa/efeitos dos fármacos , Pessoa de Meia-IdadeRESUMO
BACKGROUND: The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS: House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS: Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION: Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.
Assuntos
Asma , Lectinas Tipo C , Neutrófilos , Animais , Humanos , Camundongos , Asma/metabolismo , Caspases/metabolismo , Quimiocinas/metabolismo , Gasderminas , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pyroglyphidae , PiroptoseRESUMO
BACKGROUND: Spinal cord ischemiaâreperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemiaâreperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS: Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS: The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1ß-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS: H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.
Assuntos
Sulfeto de Hidrogênio , Morfolinas , Fármacos Neuroprotetores , Compostos Organotiofosforados , Traumatismo por Reperfusão , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 3/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Apoptose , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismoRESUMO
In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.
Assuntos
Camptotecina , Lipídeos , Lipossomos , Camptotecina/química , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/farmacologia , Lipossomos/química , Animais , Camundongos , Lipídeos/química , Humanos , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Feminino , Química Click/métodos , Camundongos Endogâmicos BALB CRESUMO
Interfacial interactions between deformable bubbles and oil drops have attracted much attention in foam flooding. However, interactions involving nitrogen bubbles have not been reported. In this work, the interaction forces between nitrogen and dodecane/toluene in aqueous solutions were quantified using the atomic force microscopy bubble probe technique. The effects of the solution pH, ionic type, and solution concentration on the interactions were analyzed. The van der Waals (vdW), electric double layer (EDL), and hydrophobic (HB) interactions were involved in the low-concentration solutions. The EDL repulsion in NaCl increased with solution pH, while in CaCl2 and MgCl2, the EDL repulsion in general decreased and then increased with pH, attributed to the adsorption of OH- and divalent cations and their hydration products. The adsorption of divalent cations at the toluene/water interface was pronounced by cation-π interactions. At pH 10, precipitated divalent cation hydroxides at the bubble/water and oil/water interfaces adsorbed more cations, causing the increase of the surface potential. At high salinity, the EDL interaction was suppressed and the vdW repulsion became predominant. The vdW force of nitrogen with toluene was stronger than that with dodecane. Under all of the solution conditions, the attractive interaction could not overcome the total repulsive interaction at the minimum separation, and thus no bubble attachment was observed, which implied that a stable bubble/liquid/oil film was essential for maintaining foam stability. This work provides useful insights into the interfacial interaction mechanisms in nitrogen foam flooding. The findings can be readily extended to other engineering systems such as oil flotation and bubble-oil-water emulsions.
RESUMO
Proteolysis-targeting chimeras (PROTACs) are hetero-bifunctional molecules that induce the degradation of target proteins by recruiting an E3 ligase. PROTACs have the potential to inactivate disease-related genes that are considered undruggable by small molecules, making them a promising therapy for the treatment of incurable diseases. However, only a few hundred proteins have been experimentally tested for their amenability to PROTACs, and it remains unclear which other proteins in the entire human genome can be targeted by PROTACs. In this study, we have developed PrePROTAC, an interpretable machine learning model based on a transformer-based protein sequence descriptor and random forest classification. PrePROTAC predicts genome-wide targets that can be degraded by CRBN, one of the E3 ligases. In the benchmark studies, PrePROTAC achieved a ROC-AUC of 0.81, an average precision of 0.84, and over 40% sensitivity at a false positive rate of 0.05. When evaluated by an external test set which comprised proteins from different structural folds than those in the training set, the performance of PrePROTAC did not drop significantly, indicating its generalizability. Furthermore, we developed an embedding SHapley Additive exPlanations (eSHAP) method, which extends conventional SHAP analysis for original features to an embedding space through in silico mutagenesis. This method allowed us to identify key residues in the protein structure that play critical roles in PROTAC activity. The identified key residues were consistent with existing knowledge. Using PrePROTAC, we identified over 600 novel understudied proteins that are potentially degradable by CRBN and proposed PROTAC compounds for three novel drug targets associated with Alzheimer's disease.
Assuntos
Doença de Alzheimer , Ubiquitina-Proteína Ligases , Humanos , Sequência de Aminoácidos , Genoma Humano , Aprendizado de Máquina , Quimera de Direcionamento de ProteóliseRESUMO
Systematically discovering protein-ligand interactions across the entire human and pathogen genomes is critical in chemical genomics, protein function prediction, drug discovery, and many other areas. However, more than 90% of gene families remain "dark"-i.e., their small-molecule ligands are undiscovered due to experimental limitations or human/historical biases. Existing computational approaches typically fail when the dark protein differs from those with known ligands. To address this challenge, we have developed a deep learning framework, called PortalCG, which consists of four novel components: (i) a 3-dimensional ligand binding site enhanced sequence pre-training strategy to encode the evolutionary links between ligand-binding sites across gene families; (ii) an end-to-end pretraining-fine-tuning strategy to reduce the impact of inaccuracy of predicted structures on function predictions by recognizing the sequence-structure-function paradigm; (iii) a new out-of-cluster meta-learning algorithm that extracts and accumulates information learned from predicting ligands of distinct gene families (meta-data) and applies the meta-data to a dark gene family; and (iv) a stress model selection step, using different gene families in the test data from those in the training and development data sets to facilitate model deployment in a real-world scenario. In extensive and rigorous benchmark experiments, PortalCG considerably outperformed state-of-the-art techniques of machine learning and protein-ligand docking when applied to dark gene families, and demonstrated its generalization power for target identifications and compound screenings under out-of-distribution (OOD) scenarios. Furthermore, in an external validation for the multi-target compound screening, the performance of PortalCG surpassed the rational design from medicinal chemists. Our results also suggest that a differentiable sequence-structure-function deep learning framework, where protein structural information serves as an intermediate layer, could be superior to conventional methodology where predicted protein structures were used for the compound screening. We applied PortalCG to two case studies to exemplify its potential in drug discovery: designing selective dual-antagonists of dopamine receptors for the treatment of opioid use disorder (OUD), and illuminating the understudied human genome for target diseases that do not yet have effective and safe therapeutics. Our results suggested that PortalCG is a viable solution to the OOD problem in exploring understudied regions of protein functional space.
Assuntos
Algoritmos , Proteínas , Humanos , Ligantes , Proteínas/química , Sítios de Ligação , Aprendizado de Máquina , Ligação ProteicaRESUMO
α-succinimide-substituted allenoates were employed as phosphine acceptors in phosphine-catalyzed (4 + 2) annulation with 1,1-dicyanoalkenes. They served as C4 synthons in the annulation reaction under mild reaction conditions and produced hexahydroisoindole derivatives in moderate to high yields with good to excellent diastereoselectivities.
RESUMO
An oxidative cascade iodocyclization of 1,7- or 1,8-dienes has been realized under mild conditions. By employing I2 as an iodine source, this protocol provides a concise and efficient approach to a great deal of biologically significant iodinated benzo[b]azepine and benzo[b]azocine derivatives in moderate to good yields. The gram-scale synthesis and further transformation of products render the approach practical and attractive. Radical trapping and deuterium-labeling experiments help to understand the mechanism.