Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 358: 17-24, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987310

RESUMO

(S)-2-chlorophenylglycine ((S)-CPG) is a key chiral intermediate for the synthesis of clopidogrel. Herein, a novel, efficient and environmentally friendly chemo-enzymatic route for the preparation of optically pure (S)-CPG was developed. A straightforward chemical synthesis of the corresponding prochiral keto acid substrate (2-chlorophenyl)glyoxylic acid (CPGA) was developed with 91.7% yield, which was enantioselectively aminated by leucine dehydrogenase (LeuDH) to (S)-CPG. Moreover, protein engineering of LeuDH was performed via directed evolution and semi-rational design. A beneficial variant EsLeuDH-F362L with enlarged substrate-binding pocket and increased hydrogen bond between K77 and substrate CPGA was constructed, which exhibited 2.1-fold enhanced specific activity but decreased thermal stability. Coupled with a glucose dehydrogenase from Bacillus megaterium (BmGDH) for NADH regeneration, EsLeuDH-F362L completely converted up to 0.5 M CPGA to (S)-CPG in 8 h at 40 °C.


Assuntos
Proteínas de Bactérias , NAD , Proteínas de Bactérias/metabolismo , Biocatálise , Clopidogrel , Glucose 1-Desidrogenase/metabolismo , Leucina Desidrogenase/metabolismo , NAD/metabolismo
2.
J Proteomics ; 239: 104193, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33757877

RESUMO

Comparative proteomes of Actinoplanes utahensis ZJB-03852 grown on various saccharides (glucose, maltotriose, maltose, glucose + maltose) were analyzed using 2D-DIGE and MALDI-TOF/TOF-MS. Acarbose was detected in all groups except in the glucose only culture. The abundance of acarbose synthesis proteins AcbV, AcbK, AcbL and AcbN was highest in the medium containing mixed glucose and maltose. The accumulation of Zwf and Xpk1 in acarbose-producing media indicated that the cyclitol moiety of acarbose was derived from pentose phosphate pathway. The elevation of GlnA supported that glutamine was a good nitrogen source of the nitrogen-atom in acarbose synthesis. SIGNIFICANCE: Non-insulin-dependent diabetes mellitus, also known as Type II diabetes, constitutes >90% of the diabetes mellitus worldwide. Acarbose is clinically utilized to treat Type II diabetes, but the fermentation process of acarbose-producing Actinoplanes is usually accompanied with structural analogues of acarbose. In this study, we compared the proteomics of Actinoplanes utahensis ZJB-03852 grown on various saccharides by 2D-DIGE and MALDI-TOF/TOF-MS. Our findings highlighted the importance of key proteins in the formation of acarbose and its analogues when A. utahensis was cultivated in various saccharides. These results revealed fundamental data to elucidate the complexity of formation of acarbose analogues.


Assuntos
Actinoplanes , Diabetes Mellitus Tipo 2 , Acarbose , Humanos , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA