Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393380

RESUMO

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in DOP patients.

2.
Clin Endocrinol (Oxf) ; 100(4): 379-388, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38351437

RESUMO

BACKGROUND: The poor overall prognosis of radioiodine refractory thyroid cancer is an inevitable challenge in managing this disease. A series of trials have demonstrated the antitumor activity of tyrosine kinase inhibitors (TKIs) in radioiodine refractory differentiated thyroid cancer (RAIR-DTC). However, the available evidence cannot determine the optimal choice of TKI in RAIR-DTC. METHODS: This study searched PubMed, EMBASE, Cochrane databases, and the ClinicalTrials website. The Cochrane bias risk tool was used to assess the risk of bias, and to evaluate randomized clinical trials (RCT) of RAIR-DTC patients treated with the TKI system. Outcomes, including progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were reported. RESULTS: Seven studies involving 1310 patients with RAIR-DTC was conducted to compare the PFS and OS of various TKI monotherapies with placebo. The results showed that all TKI monotherapies had a statistically significant benefit in terms of PFS compared with placebo, with lenvatinib demonstrating the greatest benefit (hazard ratio [HR] 0.19, 95% credible interval [CrI] 0.14-0.25). In terms of OS, only apatinib (HR 0.42, 95% CrI 0.18-0.97) and anlotinib (HR 0.36, 95% CrI 0.18-0.73) showed statistically significant benefits compared with placebo. TKIs also had a higher incidence of AEs of grade 3 or higher compared with placebo. The findings suggest that lenvatinib may be the preferred TKI for the treatment of RAIR-DTC, although its high incidence of AEs should be considered. The results also indicate that TKI treatment may be similarly effective in RAIR-DTC patients with BRAF or RAS mutations and in those with papillary or follicular subtypes of the disease, regardless of prior TKI treatment. CONCLUSIONS: The results of this meta-analysis suggest that targeted therapy with TKIs may be beneficial for patients with radioiodine-refractory advanced or metastatic differentiated thyroid cancer. Among the TKIs analyzed, lenvatinib appeared to be the most effective at improving PFS, although it also had the highest incidence of AEs. Further research through direct randomized controlled trials is needed to determine the optimal choice of TKI for treating patients with RAIR-DTC. This study is beneficial for formulating patients' treatment plans and guides clinicians' decision-making.


Assuntos
Antineoplásicos , Quinolinas , Neoplasias da Glândula Tireoide , Humanos , Antineoplásicos/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Neoplasias da Glândula Tireoide/patologia
3.
Pediatr Transplant ; 28(1): e14527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37550270

RESUMO

Approximately 70% (90.5 million) of United States (US) households own at least one pet. Dogs are the most common, making up about 38% of all household pets, followed by cats, which make up 25%. Other pets such as fish, birds, reptiles, and small animals such as hamsters, gerbils, and rabbits are less common household members. Pets are often considered a part of the family and there are significant medical and psychosocial benefits to pet ownership; however, the possibility of disease transmission exists related to the type of animal and infectious organism, and specific human risk factors. Immunocompromised individuals may be at increased risk of serious illness from zoonotic infections. During the transplant evaluation and routinely posttransplant, the multidisciplinary team should inquire about pet ownership and animal exposures to guide on potential risks. This review discusses the most common diseases seen in various household pets including dogs, cats, birds, fish, and some farm animals. We will also present guidelines for pet safety and include strategies to decrease the risk of infection while supporting the benefits of pet ownership after transplant.


Assuntos
Animais de Estimação , Transplantados , Animais , Criança , Cães , Humanos , Hospedeiro Imunocomprometido , Animais de Estimação/psicologia , Fatores de Risco , Estados Unidos , Zoonoses/prevenção & controle
4.
Respiration ; : 1-11, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422997

RESUMO

INTRODUCTION: Distinguishing between malignant pleural effusion (MPE) and benign pleural effusion (BPE) poses a challenge in clinical practice. We aimed to construct and validate a combined model integrating radiomic features and clinical factors using computerized tomography (CT) images to differentiate between MPE and BPE. METHODS: A retrospective inclusion of 315 patients with pleural effusion (PE) was conducted in this study (training cohort: n = 220; test cohort: n = 95). Radiomic features were extracted from CT images, and the dimensionality reduction and selection processes were carried out to obtain the optimal radiomic features. Logistic regression (LR), support vector machine (SVM), and random forest were employed to construct radiomic models. LR analyses were utilized to identify independent clinical risk factors to develop a clinical model. The combined model was created by integrating the optimal radiomic features with the independent clinical predictive factors. The discriminative ability of each model was assessed by receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA). RESULTS: Out of the total 1,834 radiomic features extracted, 15 optimal radiomic features explicitly related to MPE were picked to develop the radiomic model. Among the radiomic models, the SVM model demonstrated the highest predictive performance [area under the curve (AUC), training cohort: 0.876, test cohort: 0.774]. Six clinically independent predictive factors, including age, effusion laterality, procalcitonin, carcinoembryonic antigen, carbohydrate antigen 125 (CA125), and neuron-specific enolase (NSE), were selected for constructing the clinical model. The combined model (AUC: 0.932, 0.870) exhibited superior discriminative performance in the training and test cohorts compared to the clinical model (AUC: 0.850, 0.820) and the radiomic model (AUC: 0.876, 0.774). The calibration curves and DCA further confirmed the practicality of the combined model. CONCLUSION: This study presented the development and validation of a combined model for distinguishing MPE and BPE. The combined model was a powerful tool for assisting in the clinical diagnosis of PE patients.

5.
Pediatr Nephrol ; 38(10): 3297-3308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37140708

RESUMO

BACKGROUND: In single-center studies, both preterm birth and low birth weight (LBW) are associated with worse outcomes in childhood nephrotic syndrome. Using the Nephrotic Syndrome Study Network (NEPTUNE) observational cohort, we tested the hypothesis that in patients with nephrotic syndrome, hypertension, proteinuria status, and disease progression would be more prevalent and more severe in subjects with LBW and prematurity singly or in combination (LBW/prematurity). METHODS: Three hundred fifty-nine adults and children with focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD) and available birth history were included. Estimated glomerular filtration rate (eGFR) decline and remission status were primary outcomes, and secondary outcomes were kidney histopathology, kidney gene expression, and urinary biomarkers. Logistic regression was used to identify associations with LBW/prematurity and these outcomes. RESULTS: We did not find an association between LBW/prematurity and remission of proteinuria. However, LBW/prematurity was associated with greater decline in eGFR. This decline in eGFR was partially explained by the association of LBW/prematurity with APOL1 high-risk alleles, but the association remained after adjustment. There were no differences in kidney histopathology or gene expression in the LBW/prematurity group compared to normal birth weight/term birth. CONCLUSION: LBW and premature babies who develop nephrotic syndrome have a more rapid decline in kidney function. We did not identify clinical or laboratory features that distinguished the groups. Additional studies in larger groups are needed to fully ascertain the effects of (LBW) and prematurity alone or in combination on kidney function in the setting of nephrotic syndrome.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Nascimento Prematuro , Feminino , Humanos , Criança , Recém-Nascido , Adulto , Síndrome Nefrótica/complicações , Estudos de Coortes , Peso ao Nascer , Netuno , Nascimento Prematuro/epidemiologia , Recém-Nascido de Baixo Peso , Glomerulosclerose Segmentar e Focal/patologia , Proteinúria/etiologia , Proteinúria/complicações , Apolipoproteína L1/genética
6.
J Ren Nutr ; 33(5): 657-665, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302720

RESUMO

OBJECTIVES: Arterial calcification contributes to cardiovascular mortality. Based on a recent animal study, we hypothesized that higher dietary potassium intake was associated with less abdominal aortic calcification (AAC) and lower arterial stiffness among adults in the United States. METHODS: Cross-sectional analyses were performed on participants over 40 years old from the National Health and Nutrition Examination Survey 2013-2014. Dietary potassium intake was categorized into quartiles (Q1: <1911, Q2: 1911-2461, Q3: 2462-3119, and Q4: >3119 mg/d). Primary outcome AAC was quantified using the Kauppila scoring system. AAC scores were categorized into no AAC (AAC = 0, reference group), mild/moderate (AAC >0 to ≤ 6), and severe AAC (AAC >6). Pulse pressure was used as a surrogate for arterial stiffness and examined as a secondary outcome. RESULTS: Among 2,418 participants, there was not a linear association between dietary potassium intake and AAC. Higher dietary potassium intake was associated with less severe AAC when comparing dietary potassium intake in Q2 with Q1 (odds ratio 0.55; 95% confidence interval: 0.34 to 0.92; P = .03). Higher dietary potassium intake was significantly associated with lower pulse pressure (P = .007): per 1000 mg/d higher dietary potassium intake, pulse pressure was 1.47 mmHg lower in the fully adjusted model. Compared to participants with dietary potassium intake in Q1, pulse pressure was 2.84 mmHg lower in Q4 (P = .04). CONCLUSIONS: We did not find a linear association between dietary potassium intake and AAC. Dietary potassium intake was negatively associated with pulse pressure.


Assuntos
Potássio na Dieta , Calcificação Vascular , Humanos , Estados Unidos , Calcificação Vascular/epidemiologia , Inquéritos Nutricionais , Pressão Sanguínea , Estudos Transversais , Fatores de Risco
7.
Anal Chem ; 93(42): 14059-14067, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34643370

RESUMO

Single-cell-based genomics and transcriptomics analysis have revealed substantial cellular heterogeneity among seemingly identical cells. Knowledge of the cellular heterogeneity at multiomics levels is vital for a better understanding of tumor metastasis and drug resistance, stem cell differentiation, and embryonic development. However, unlike genomics and transcriptomics studies, single-cell characterization of metabolites, proteins, and post-translational modifications at the omics level remains challenging due to the lack of amplification methods and the wide diversity of these biomolecules. Therefore, new tools that are capable of investigating these unamplifiable "omes" from the same single cells are in high demand. In this work, a microwell chip was prepared and the internal surface was modified for hydrophilic interaction liquid chromatography-based tandem extraction of metabolites and proteins and subsequent protein digestion. Next, direct electrospray ionization mass spectrometry was adopted for single-cell metabolome identification, and a data-independent acquisition-mass spectrometry approach was established for simultaneous proteome profiling and phosphoproteome analysis without phosphopeptide enrichment. This integrated strategy resulted in 132 putatively annotated compounds, more than 1200 proteins, and the first large-scale phosphorylation data set from single-cell analysis. Application of this strategy in chemical perturbation studies provides a multiomics view of cellular changes, demonstrating its capability for more comprehensive investigation of cellular heterogeneity.


Assuntos
Proteoma , Espectrometria de Massas por Ionização por Electrospray , Cromatografia de Afinidade , Cromatografia Líquida , Processamento de Proteína Pós-Traducional
8.
Intern Med J ; 51(5): 732-738, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32149434

RESUMO

BACKGROUND: Primary insomnia is a worldwide problem and it has a considerable negative impact on one's physical and mental health. Studies have shown that non-synonymous Single-nucleotide polymorphisms in 5-hydroxytryptamine (serotonin or 5-HT) are related to primary insomnia. Previous studies have shown that 5-HT polymorphism (rs140700) is related to depression, and insomnia is often accompanied by depression and anxiety. The relationship between this site and primary insomnia is unknown. We speculated that this site may be related to primary insomnia, so we investigated the relationship between rs140700 and primary insomnia. AIMS: To explore the relationship between the 5-HT gene polymorphism rs140700 and primary insomnia. METHODS: In this study, we included 57 patients with primary insomnia and 54 age- and gender-matched normal controls. The subjects who belonged to the Chinese population were subjected to polysomnography for three consecutive nights. Their sleep quality was assessed, and the genotypes of the 5-hydroxytryptamine (5-HT) gene polymorphism rs140700 were determined by the flight mass spectrometry. RESULTS: The genotype distributions of the 5-HT gene polymorphism rs140700 were in Hardy-Weinberg equilibrium in both patients and controls (P > 0.05). The allele and genotype distributions of this variant were comparable between the patients and controls in all subjects and between genders (all P > 0.05). The influence of rs140700 on percentage of stage 1 (P = 0.015) change and arousal index (P = 0.028) of primary insomnia was statistically significant. The logistic multi-factor regression analysis results revealed that 5-HT gene polymorphism rs140700 was not a risk factor for primary insomnia in the Chinese population (P = 0.589). CONCLUSIONS: The 5-HT gene polymorphism rs140700 may not be a susceptibility locus for primary insomnia in the Chinese population.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina , Distúrbios do Início e da Manutenção do Sono , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/genética
9.
J Proteome Res ; 19(12): 4808-4814, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33172275

RESUMO

The Chromosome-Centric Human Proteome Project (C-HPP) was launched in 2012 to perfect the annotation of human protein existence by identifying stronger evidence of the expression of missing proteins (MPs) at the protein level. After an 8 year effort all over the world, the number of MPs in the neXtProt database significantly decreased from 5511 (2012-02-24) to 1899 (2020-01-17). It is now more difficult to provide confident evidence of the remaining MPs because of their specific characteristics, including low abundance, low molecular weight, unexpected modifications, transmembrane structure, tissue-expression specificity, and so on. A higher resolution mass spectrometry (MS) interpretation engine might provide an opportunity to identify these buried MPs in complex samples by the combination with multi-tissue large-scale proteomics. In this study, open-pFind was used to dig MPs from 20 pairs of healthy human tissues by Wang et al. ( Mol. Syst. Biol. 2019, 15 (2), e8503) combined with our large-scale testis data set digested by three enzymes (Glu-C, Lys-C, and trypsin) with specificity for different amino acid residues ( J. Proteme Res. 2019, 18 (12), 4189-4196). A total of 1 535 536 peptides with 17 283 477 peptide-spectrum matches (PSMs) were mapped to 14 279 protein entries at a false discovery rate of <1% at the PSM, peptide, and protein levels. A total of 103 MP candidates were identified, among which 86 candidates had more unique peptide numbers compared with our single testis tissue. After rigorous screening, manual checks, peptide synthesis, and matching with documented peptides from PeptideAtlas, we validated four MPs, P0C7T8 (duodenum and small intestine), Q8WWZ4 (stomach and rectum), Q8IV35 (fallopian tube), and O14921 (tonsil), at the protein level. All MS raw files have been deposited to the ProteomeXchange with identifier PXD021391.


Assuntos
Proteoma , Proteômica , Feminino , Humanos , Masculino , Espectrometria de Massas , Peso Molecular , Peptídeos
10.
Anal Chem ; 92(1): 690-698, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31859485

RESUMO

Protein O-glycosylation has long been recognized to be closely associated with many diseases, particularly with tumor proliferation, invasion, and metastasis. The ability to efficiently profile the variation of O-glycosylation in large-scale clinical samples provides an important approach for the development of biomarkers for cancer diagnosis and for therapeutic response evaluation. Therefore, mass spectrometry (MS)-based techniques for high throughput, in-depth and reliable elucidation of protein O-glycosylation in large clinical cohorts are in high demand. However, the wide existence of serine and threonine residues in the proteome and the tens of mammalian O-glycan types lead to extremely large searching space composed of millions of theoretical combinations of peptides and O-glycans for intact O-glycopeptide database searching. As a result, an exceptionally long time is required for database searching, which is a major obstacle in O-glycoproteome studies of large clinical cohorts. More importantly, because of the low abundance and poor ionization of intact O-glycopeptides and the stochastic nature of data-dependent MS2 acquisition, substantially elevated missing data levels are inevitable as the sample number increases, which undermines the quantitative comparison across samples. Therefore, we report a new MS data processing strategy that integrates glycoform-specific database searching, reference library-based MS1 feature matching and MS2 identification propagation for fast identification, in-depth, and reproducible label-free quantification of O-glycosylation of human urinary proteins. This strategy increases the database searching speeds by up to 20-fold and leads to a 30%-40% enhanced intact O-glycopeptide quantification in individual samples with an obviously improved reproducibility. In total, we identified 1300 intact O-glycopeptides in 36 healthy human urine samples with a 30%-40% reduction in the amount of missing data. This is currently the largest dataset of urinary O-glycoproteome and demonstrates the application potential of this new strategy in large-scale clinical investigations.


Assuntos
Glicopeptídeos/urina , Cromatografia Líquida , Estudos de Coortes , Feminino , Glicosilação , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas
11.
Anal Chem ; 92(8): 5695-5700, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32212632

RESUMO

Glycan modification prompts important concerns about the quality control of biopharmaceutical production. Conbercept is a multiglycosylated recombinant fusion protein drug approved for the treatment of age-related macular degeneration (AMD). With 14 N-glycosites in the molecule and 7 N-glycosites in the monomer, the charge isomer separation and characterization of conbercept pose great challenges due to its enormous heterogeneities. The batch-to-batch stability on the charge isomer distribution and the possible causation of the pattern necessitate the development of effective analytical approaches. Here, the immobilized pH gradient (IPG)-based two-dimensional gel electrophoresis (2-DE) approach was first optimized to achieve high-resolution, high-reproducible separation and preparation of charge isomers. Then, combined with the quantitative analysis strategy of site-specific N-glycan heterogeneity based on the diagnostic MS2 ion (peptides+GlcNAc, Y1 ions) of glycopeptides, an integrated approach for the quantitation of site-specific N-glycan heterogeneities among charge isomers was established. Finally, the quantitation of site-specific N-glycoforms in each of the 2-DE resolved spots were performed, and the results showed that the sialylation tends to increase for gel spots located in the acidic regions. This study provides an effective approach to separate the charge isomers of the heavily glycosylated protein drugs, and to quantitatively explore the site-specific N-glycans dynamics along with the different charge isomers.


Assuntos
Polissacarídeos/análise , Proteínas Recombinantes de Fusão/química , Configuração de Carboidratos , Eletroforese em Gel Bidimensional , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Estereoisomerismo
12.
Anal Chem ; 92(19): 12801-12808, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32966065

RESUMO

Due to its key roles in regulating the occurrence and development of cancer, protein histidine phosphorylation has been increasingly recognized as an important form of post-translational modification in recent years. However, large-scale analysis of histidine phosphorylation is much more challenging than that of serine/threonine or tyrosine phosphorylation, mainly because of its acid lability. In this study, MoS2-Ti4+ nanomaterials were synthesized using a solvothermal method and taking advantage of the electrostatic adsorption between MoS2 nanosheets and Ti4+. The MoS2-Ti4+ nanomaterials have the advantage of the combined affinity of Ti4+ and Mo toward phosphorylation under medium acidic conditions (pH = 3), which is crucial for preventing hydrolysis and loss of histidine phosphorylation during enrichment. The feasibility of using the MoS2-Ti4+ nanomaterial for phosphopeptide enrichment was demonstrated using mixtures of ß-casein and bovine serum albumin (BSA). Further evaluation revealed that the MoS2-Ti4+ nanomaterial is capable of enriching synthetic histidine phosphopeptides from 1000 times excess tryptic-digested HeLa cell lysate. Application of the MoS2-Ti4+ nanomaterials for large-scale phosphopeptide enrichment results in the identification of 10 345 serine, threonine, and tyrosine phosphosites and the successful mapping of 159 histidine phosphosites in HeLa cell lysates, therefore indicating great potential for deciphering the vital biological roles of protein (histidine) phosphorylation.


Assuntos
Dissulfetos/química , Histidina/análise , Molibdênio/química , Nanoestruturas/química , Fosfopeptídeos/análise , Titânio/química , Histidina/metabolismo , Humanos , Espectrometria de Massas , Estrutura Molecular , Tamanho da Partícula , Fosfopeptídeos/metabolismo , Fosforilação , Propriedades de Superfície
13.
Anal Bioanal Chem ; 412(8): 1729-1740, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030490

RESUMO

Cytochrome P450 (CYP450) and 5'-diphosphate glucuronosyltransferases (UGT) are the two major families of drug-metabolizing enzymes in the human liver microsome (HLM). As a result of their frequent abundance fluctuation among populations, the accurate quantification of these enzymes in different individuals is important for designing patient-specific dosage regimens in the framework of precision medicine. The preparation and quantification of internal standards is an essential step for the quantitative analysis of enzymes. However, the commonly employed stable isotope labeling-based strategy (QconCAT) suffers from requiring very expensive isotopic reagents, tedious experimental procedures, and long labeling times. Furthermore, arginine-to-proline conversion during metabolic isotopic labeling compromises the quantification accuracy. Therefore, we present a new strategy that replaces stable isotope-labeled amino acids with lanthanide labeling for the preparation and quantification of QconCAT internal standard peptides, which leads to a threefold reduction in the reagent costs and a fivefold reduction in the time consumed. The absolute amount of trypsin-digested QconCAT peptides can be obtained by lanthanide labeling and inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis with a high quantification accuracy (%RE < 20%). By taking advantage of the highly selective and facile ICP-OES procedure and multiplexed large-scale absolute target protein quantification using biological mass spectrometry, this strategy was successfully used for the absolute quantification of drug-metabolizing enzymes. We obtained good linearity (correlation coefficient > 0.95) over concentrations spanning 2.5 orders of magnitude with improved sensitivity (limit of quantification = 2 fmol) in nine HLM samples, indicating the potential of this method for large-scale absolute target protein quantification in clinical samples. Graphical abstract.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Espectrometria de Massas/métodos , Microssomos Hepáticos/enzimologia , Adulto , Idoso , Sequência de Aminoácidos , Sistema Enzimático do Citocromo P-450/química , Feminino , Glucuronosiltransferase/química , Humanos , Masculino , Pessoa de Meia-Idade , Mapeamento de Peptídeos , Adulto Jovem
14.
J Med Virol ; 91(8): 1448-1469, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30875452

RESUMO

The rotavirus (RV) is the most important causative agent of severe gastroenteritis in infants and children aged less than 5 years worldwide. However, the response and the roles of peripheral blood mononuclear cell (PBMC) in RV clearance have yet to be fully elucidated. In this study, we established the neonatal rhesus monkey model of RV infection with histopathological changes in the small intestine. Then, we investigated gene expression changes in PBMCs from the monkey model of RV infection. Similar pathways regulated in rhesus monkeys that received intragastric administration of the RV monkey SA11 strain (G3P[2]) and the human wild-type strain ZTR-68 (G1P[8]). Gene profiling showed differences in functional genes mainly associated with chemokine signaling pathways and cytokine-cytokine receptor interactions post RV infection. Transferrin and C-C motif chemokine ligand 23 (CCL23) gene expression were upregulated in PBMCs of monkeys when stimulated by simian and human RV strains. Monkeys infected with RV had an enhanced and prolonged inflammatory response that was associated with increased levels of CCL20, CCL23, and C-X-C motif chemokine ligand 1; while inhibition of major histocompatibility complex class I expression may be important for immune evasion by RV. The RV infection was also characterized by pathological changes in the small intestine with a cytokine and chemokine storm. This study identified the chemokine signaling pathway and immune response genes involved in RV infection in infant rhesus monkeys. The SA11 RV strain is more suitable for establishing a monkey diarrhea model than the ZTR-68 RV strain.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Gastroenterite/patologia , Fatores Imunológicos/metabolismo , Leucócitos Mononucleares/imunologia , Infecções por Rotavirus/patologia , Rotavirus/imunologia , Animais , Animais Recém-Nascidos , Perfilação da Expressão Gênica , Histocitoquímica , Intestinos/patologia , Macaca mulatta
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 60-68, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29017894

RESUMO

Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus-host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.


Assuntos
Autofagia/genética , MicroRNAs/fisiologia , Receptores de Somatomedina/genética , Rotavirus/genética , Animais , Células CACO-2 , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Células HT29 , Humanos , Lactente , Macaca mulatta , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
16.
Nucleic Acids Res ; 44(22): 10662-10675, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27613418

RESUMO

HOXB9 is a homeobox domain-containing transcription factor, playing an important role in embryonic development and cancer progression. However, the precise post-translational modifications (PTMs) of HOXB9 and the corresponding roles are unclear. Here, we report that acetyltransferase p300/CBP-associated factor (PCAF) interacts with and acetylates HOXB9 both in vivo and in vitro Conversely, the acetylation of HOXB9 can be reversed by deacetylase SIRT1. Furthermore, we found that HOXB9 is acetylated at lysine 27 (AcK27). Functionally, in contrast to the wild type HOXB9, AcK27-HOXB9 decreased its capacity in promoting lung cancer cell migration and tumor growth in mice. Mechanistically, AcK27-HOXB9 suppresses the transcription of its target gene Jumonji domain-containing protein 6 (JMJD6) by direct occupying the promoter of JMJD6 gene. For clinical relevance, elevated HOXB9 acetylation at K27 predicts a better prognosis in lung adenocarcinoma patients. Taken together, we identified the first PTM of HOXB9 by demonstrating that HOXB9 can be acetylated and AcK27-HOXB9 counteracts the role of the wild-type HOXB9 in regulating lung adenocarcinoma progression.


Assuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição de p300-CBP/fisiologia , Células A549 , Acetilação , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Sequência de Aminoácidos , Animais , Movimento Celular , Progressão da Doença , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Processamento de Proteína Pós-Traducional , Sirtuína 1/metabolismo , Transcrição Gênica
17.
Nucleic Acids Res ; 43(7): 3591-604, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800736

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator that catalyzes the trimethylation of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associated factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 (PRC2). Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients predicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acetylation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste , Inativação Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Espectrometria de Massas , Metástase Neoplásica , Complexo Repressor Polycomb 2/genética , Estabilidade Proteica , Sirtuína 1/metabolismo
18.
Basic Res Cardiol ; 111(1): 4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611208

RESUMO

Persistent elevation of Ca(2+) influx due to prolongation of the action potential (AP), chronic activation of the ß-adrenergic system and molecular remodeling occurs in stressed and diseased hearts. Increases in Ca(2+) influx are usually linked to prolonged myocyte action potentials and arrhythmias. However, the contribution of chronic enhancement of Cav1.2 activity on cardiac electrical remodeling and arrhythmogenicity has not been completely defined and is the subject of this study. Chronically increased Cav1.2 activity was produced with a cardiac specific, inducible double transgenic (DTG) mouse system overexpressing the ß2a subunit of Cav (Cavß2a). DTG myocytes had increased L-type Ca(2+) current (ICa-L), myocyte shortening, and Ca(2+) transients. DTG mice had enhanced cardiac performance, but died suddenly and prematurely. Telemetric electrocardiograms revealed shortened QT intervals in DTG mice. The action potential duration (APD) was shortened in DTG myocytes due to significant increases of potassium currents and channel abundance. However, shortened AP in DTG myocytes did not fully limit excess Ca(2+) influx and increased the peak and tail ICa-L. Enhanced ICa promoted sarcoplasmic reticulum (SR) Ca(2+) overload, diastolic Ca(2+) sparks and waves, and increased NCX activity, causing increased occurrence of early and delayed afterdepolarizations (EADs and DADs) that may contribute to premature ventricular beats and ventricular tachycardia. AV blocks that could be related to fibrosis of the AV node were also observed. Our study suggests that increasing ICa-L does not necessarily result in AP prolongation but causes SR Ca(2+) overload and fibrosis of AV node and myocardium to induce cellular arrhythmogenicity, arrhythmias, and conduction abnormalities.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Western Blotting , Camundongos , Camundongos Transgênicos , Microscopia Confocal
20.
J Med Virol ; 88(9): 1497-510, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26890217

RESUMO

Rotavirus infection is an important cause of acute gastroenteritis in children, but the interaction between rotavirus and host cells is not completely understood. We isolated a wildtype (wt) rotavirus strain, ZTR-68(P [8] G1), which is derived from an infant with diarrhea in southwest China in 2010. In this study, we investigated host cellular miRNA expression profiles changes in response to ZTR-68 in early stage of infection to investigate the role of miRNAs upon rotavirus infection. Differentially expressed miRNAs were identified by deep sequencing and qRT-PCR and the function of their targets predicted by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. A total of 36 candidate miRNAs were identified. Comparative analysis indicated that 29 miRNAs were significantly down-regulated and 7 were up-regulated after infection. The data were provided contrasting the types of microRNAs in two different permissive cell lines (HT29 and MA104). The target assays results showed that mml-miR-7 and mml-miR-125a are involved in anti-rotavirus and virus-host interaction in host cells. These results offer clues for identifying potential candidates in vector-based antiviral strategies. J. Med. Virol. 88:1497-1510, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Infecções por Rotavirus/genética , Rotavirus/fisiologia , Biomarcadores , Linhagem Celular , China , Biologia Computacional , Diarreia/virologia , Regulação para Baixo , Células HT29 , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA