Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 53(10): 1297-1305, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37040156

RESUMO

Heparinase I (EC 4.2.2.7), is an enzyme that cleaves heparin, showing great potential for eco-friendly production of low molecular weight heparin (LMWH). However, owing to its poor catalytic activity and thermal stability, the industrial application of heparinase I has been severely hindered. To improve the catalytic activity, we proposed to engineer both the substrate and Ca2+ binding domains of heparinase I. Several heparinases I from different organisms were selected for multiple sequence alignment and molecular docking to screen the key residues in the binding domain. Nine single-point mutations were selected to enhance the catalytic activity of heparinase I. Among them, T250D was the most highly active one, whereas mutations around Ca2+ binding domain yielded two active mutants. Mutant D152S/R244K/T250D with significantly increased catalytic activity was obtained by combined mutation. The catalytic efficiency of the mutant was 118,875.8 min-1·µM-1, which was improved 5.26 times. Molecular modeling revealed that the improved activity and stability of the mutants were probably attributed to the formation of new hydrogen bonds. The highly active mutant had great potential applications in industry and the strategy could be used to improve the performance of other enzymes.


HighlightsImproved catalytic activity of heparinase I by engineering the binding domains of substrate and Ca2+.The mutant D152S/R244K/T250D showed the highest catalytic performance.The increased hydrogen bonds attribute to the increased activity.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Heparina Liase/química , Simulação de Acoplamento Molecular , Heparina/química , Mutação
2.
J Agric Food Chem ; 72(6): 3045-3054, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307881

RESUMO

A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.


Assuntos
Heparina , Polissacarídeo-Liases , Heparina/análise , Heparina/química , Heparina/metabolismo , Heparina Liase/genética , Heparina Liase/química , Heparina Liase/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sítios de Ligação
3.
Yi Chuan ; 35(6): 714-26, 2013 Jun.
Artigo em Zh | MEDLINE | ID: mdl-23774016

RESUMO

Despite the rediscovery of heterosis about a century ago and the suggestion of various genetic models to explain this phenomenon, little consensus has yet been reached about the genetic basis of heterosis. Following the genome organization variation and gene effects, an understanding of gene differential expression in hybrids and its parents provides a new opportunity to speculate on mechanisms that might lead to heterosis. Investigation on allele-specific gene expression in hybrid and gene differential expression between hybrids and its parents might contribute to improve our understanding of the molecular basis of heterosis and eventually guide breeding practices. In this review, we discussed the recent researches on allelic-specific expression in hybrid which was frequently observed in recent studies and analyzed its regulatory mechanism. All possible modes of gene action, including additivity, high- and low-parent dominance, underdominance, and over-dominance, were observed when investigating gene differential expression between hybrids and its parents. Data from transcriptomic studies screened several heterosis-associated genes and highlighted the importance of certain key biochemical pathways that may prove to be quintessential for the manifestation of heterosis. So far, no uniform global expression pat-terns were observed in these gene expression studies. Most heterosis-associated gene expression analyses have not revealed a predominant functional category to which differentially expressed genes belong. However, these gene expression profiling studies represent a first step towards the definition of the complex gene expression networks that might be relevant in the context of heterosis. New technique on gene expression profile and advancements in bioinformatics will facilitate our understanding of the genetic basis of heterosis at the gene-expression level.


Assuntos
Perfilação da Expressão Gênica , Vigor Híbrido
4.
J Hazard Mater ; 454: 131483, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116328

RESUMO

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.


Assuntos
Roxarsona , Roxarsona/química , Microplásticos , Plásticos , Solo/química , Polietileno
5.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050390

RESUMO

Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the Km and Vmax of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca2+ and Mg2+, while strongly inhibited by Zn2+ and Co2+. Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA