Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 617(7959): 132-138, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076627

RESUMO

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucosinolatos , Proteínas de Membrana Transportadoras , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Reprodutibilidade dos Testes , Sementes/metabolismo
2.
Plant Cell ; 35(6): 2186-2207, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36857316

RESUMO

Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.


Assuntos
Citocininas , Hordeum , Citocininas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Açúcares/metabolismo , Sacarose/metabolismo
3.
Nat Prod Rep ; 39(7): 1483-1491, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35481602

RESUMO

Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.


Assuntos
Plantas , Vacúolos , Membrana Celular , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Vacúolos/metabolismo
4.
Nat Prod Rep ; 39(8): 1643, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35586985

RESUMO

Correction for 'The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism' by Deyang Xu and Barbara Ann Halkier, Nat. Prod. Rep., 2022, https://doi.org/10.1039/d2np00016d.

5.
Appl Microbiol Biotechnol ; 103(9): 3727-3736, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30915502

RESUMO

Shea tree (Vitellaria paradoxa) is one economically important plant species that mainly distributes in West Africa. Shea butter extracted from shea fruit kernels can be used as valuable products in the food and cosmetic industries. The most valuable composition in shea butter was one kind of triacylglycerol (TAG), 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). However, shea butter production is limited and little is known about the genetic information of shea tree. In this study, we tried to reveal genetic information of shea tree and identified shea TAG biosynthetic genes for future shea butter production in yeast cell factories. First, we measured lipid content, lipid composition, and TAG composition of seven shea fruits at different ripe stages. Then, we performed transcriptome analysis on two shea fruits containing obviously different levels of SOS and revealed a list of TAG biosynthetic genes potentially involved in TAG biosynthesis. In total, 4 glycerol-3-phosphate acyltransferase (GPAT) genes, 8 lysophospholipid acyltransferase (LPAT) genes, and 11 diacylglycerol acyltransferase (DGAT) genes in TAG biosynthetic pathway were predicted from the assembled transcriptome and 14 of them were cloned from shea fruit cDNA. Furthermore, the heterologous expression of these 14 potential GPAT, LPAT, and DGAT genes in Saccharomyces cerevisiae changed yeast fatty acid and lipid profiles, suggesting that they functioned in S. cerevisiae. Moreover, two shea DGAT genes, VpDGAT1 and VpDGAT7, were identified as functional DGATs in shea tree, showing they might be useful for shea butter (SOS) production in yeast cell factories.


Assuntos
Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sapotaceae/genética , Triglicerídeos/biossíntese , Leveduras/genética , Leveduras/metabolismo , Vias Biossintéticas , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Frutas/genética , Frutas/metabolismo , Engenharia Metabólica , Sapotaceae/enzimologia , Sapotaceae/metabolismo , Transcriptoma
6.
BMC Biol ; 15(1): 20, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320402

RESUMO

BACKGROUND: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant-microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. RESULTS: Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. CONCLUSIONS: Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security.


Assuntos
Anti-Infecciosos/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Vias Biossintéticas , Resistência à Doença/imunologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Triptofano/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Brassica/microbiologia , Resistência à Doença/efeitos dos fármacos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Glucosinolatos/metabolismo , Indóis/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Reprodutibilidade dos Testes , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
J Exp Bot ; 68(15): 4045-4056, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28472492

RESUMO

Transport proteins are crucial for cellular function at all levels. Numerous importers and exporters facilitate transport of a diverse array of metabolites and ions intra- and intercellularly. Identification of transporter function is essential for understanding biological processes at both the cellular and organismal level. Assignment of a functional role to individual transporter proteins or to identify a transporter with a given substrate specificity has notoriously been challenging. Recently, major advances have been achieved in function-driven screens, phenotype-driven screens, and in silico-based approaches. In this review, we highlight examples that illustrate how new technology and tools have advanced identification and characterization of plant transporter functions.


Assuntos
Botânica/métodos , Proteínas de Transporte/genética , Técnicas Genéticas , Proteínas de Plantas/genética , Plantas/metabolismo , Transporte Biológico , Botânica/instrumentação , Proteínas de Transporte/metabolismo , Técnicas Genéticas/instrumentação , Proteínas de Plantas/metabolismo , Plantas/genética
8.
J Exp Bot ; 68(12): 3205-3214, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702989

RESUMO

Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study the transport routes of plant-derived metabolites from the site of synthesis to the rhizosphere. Analysing the expression of GLS synthetic genes in the root indicate that the stele is the major site for the synthesis of aliphatic GLS, whereas indole GLS can be synthesized in both the stele and the cortex. Sampling root exudates from the wild type and the double mutant of the GLS importers GTR1 and GTR2 show that GTR-mediated retention of stele-synthesized GLS is a prerequisite for the exudation of both intact GLS and their catabolites into the rhizosphere. The expression of the GTRs inside the stele, combined with the previous observation that GLS are exported from biosynthetic cells, suggest three possible routes of stele-synthesized aliphatic GLS after their synthesis: (i) GTR-dependent import to cells symplastically connected to the cortical cells and the rhizosphere; (ii) GTR-independent transport via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Transporte Biológico , Raízes de Plantas/metabolismo
9.
Plant J ; 83(3): 375-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058952

RESUMO

After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (FeA), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the FeA level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS coordinate cell proliferation exit in normal leaf development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lignina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proliferação de Células , Histona-Lisina N-Metiltransferase/genética , Folhas de Planta/crescimento & desenvolvimento
10.
Wei Sheng Wu Xue Bao ; 55(9): 1089-96, 2015 Sep 04.
Artigo em Zh | MEDLINE | ID: mdl-26762021

RESUMO

We reviewed the history and applications of microorganism co-cultivation in food, agriculture, industry and sewage purification, and summarized ecology relationships between co-culture microorganisms. Joint mixed culture, sequence mixed culture and immobilized cells mixed culture have been used widely and lots of achievements have been made, for example, obtaining metabolites that are difficult to achieve or too low production in pure culture, transforming traditional fermentation industry, producing energy substance, improving substrate utilization ratio, expanding the scope of substrates and degrading toxic substances. Research reports indicate there are many ecology relationships between microorganisms, such as collaborative metabolism, induction effect, quorum sensing and gene transfer. The ecological interplay mechanism of co-culture microorganisms should have a further research, which will lay the foundation for developing applications of microorganism co-culture.


Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas de Cocultura/métodos , Técnicas Microbiológicas/métodos , Bactérias/genética , Bactérias/metabolismo , Técnicas de Cocultura/tendências , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Técnicas Microbiológicas/tendências
11.
Dalton Trans ; 53(23): 9819-9826, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787742

RESUMO

An AA'3B4O12-type perovskite oxide PbMn3(CrMn3)O12 was synthesized by high-pressure solid-state reactions at 8 GPa and 1373 K. Synchrotron X-ray diffraction shows a cubic crystal structure with the space group Im3̄. The charge states are verified by X-ray photoelectron spectroscopy to be PbMn3+3(Cr3+Mn3+2Mn4+)O12, where the Pb2+ and Mn3+ are 1 : 3 ordered respectively at A and A' sites, while the Cr3+, Mn3+ and Mn4+ are disorderly distributed at the B site. PbMn3(CrMn3)O12 features a long-range antiferromagnetic order of A'-site Mn3+ spins at about 66 K and a subsequent spin glass transition around 36 K due to the randomly distributed Cr3+, Mn3+, and Mn4+ cations at the B site. This unique stepwise order of A' and B-site spins indicates weak A'-B site spin interactions, which are dominated by the difference in the B-site Mn3+/Ni2+ and Mn4+ number in the quadruple perovskites AMn3B4O12.

12.
Nat Plants ; 10(1): 172-179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38177662

RESUMO

Many plant species translocate maternally synthesized specialized metabolites to the seed to protect the developing embryo and later the germinating seedling before it initiates its own de novo synthesis. While the transport route into the seed is well established for primary metabolites, no model exists for any class of specialized metabolites that move from maternal source tissue(s) to embryo. Glucosinolate seed loading in Arabidopsis depends on plasma membrane localized exporters (USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTERs, UMAMITs) and importers (GLUCOSINOLATE TRANSPORTERs, GTRs), but the critical barriers in the seed loading process remain unknown. Here we dissect the transport route of glucosinolates from their source in the reproductive organ to the embryo by re-introducing the transporters at specific apoplastic barriers in their respective mutant backgrounds. We find that UMAMIT exporters and GTR importers form a transporter cascade that is both essential and sufficient for moving glucosinolates across at least four plasma membrane barriers along the route. We propose a model in which UMAMITs export glucosinolates out of the biosynthetic cells to the apoplast, from where GTRs import them into the phloem stream, which moves them to the unloading zone in the chalazal seed coat. From here, the UMAMITs export them out of maternal tissue and ultimately, the GTRs import them into the embryo symplasm, where the seed-specific glucosinolate profile is established by enzymatic modifications. Moreover, we propose that methylsulfinylalkyl glucosinolates are the predominant mobile form in seed loading. Elucidation of the seed loading process of glucosinolates identifies barrier-specific targets for transport engineering strategies to eliminate or over-accumulate a specialized metabolite in seeds with minimal interruption of other cellular processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sementes/genética , Sementes/metabolismo
13.
Plant J ; 69(5): 792-808, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22026817

RESUMO

The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclo Celular , Histona Acetiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Acetilação , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Dano ao DNA , Replicação do DNA , DNA de Plantas/biossíntese , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases/genética , Histonas/metabolismo , Mutação , Folhas de Planta/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
14.
J Integr Plant Biol ; 55(3): 209-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23134282

RESUMO

Microtubules are highly dynamic cytoskeletal polymers of α/ß-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes. The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species, and the post-translational modification by acetylation at K40 is critical for neuronal development in vertebrates. However, the biological function of K40 of α-tubulins in plants remains unexplored. In this study, we show in Arabidopsis thaliana that constitutive expression of mutated forms of α-tubulin6 (TUA6) at K40 (TUA6(K40A) or TUA6(K40Q) ), in which K40 is replaced by alanine or glutamine, result in severely reduced plant size. Phenotypic characterization of the 35S:TUA6(K40A) transgenic plants revealed that both cell proliferation and cell expansion were affected. Cytological and biochemical analyses showed that the accumulation of α- and ß-tubulin proteins was significantly reduced in the transgenic plants, and the cortical microtubule arrays were severely disrupted, indicating that K40 of the plant α-tubulin is critical in maintaining microtubule stability. We also constructed 35S:TUA6(K40R) transgenic plants in which K40 of the engineered TUA6 protein is replaced by an arginine, and found that the 35S:TUA6(K40R) plants were phenotypically indistinguishable from the wild-type. Since lysine and arginine are similar in biochemical nature but arginine cannot be acetylated, these results suggest a structural importance for K40 of α-tubulins in cell division and expansion.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Arabidopsis/genética , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
15.
Front Plant Sci ; 14: 1219783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528977

RESUMO

Glucosinolates are key defense compounds of plants in Brassicales order, and their accumulation in seeds is essential for the protection of the next generation. Recently, members of the Usually Multiple Amino acids Move In and Out Transporter (UMAMIT) family were shown to be essential for facilitating transport of seed-bound glucosinolates from site of synthesis within the reproductive organ to seeds. Here, we set out to identify amino acid residues responsible for glucosinolate transport activity of the main seed glucosinolate exporter UMAMIT29 in Arabidopsis thaliana. Based on a predicted model of UMAMIT29, we propose that the substrate transporting cavity consists of 51 residues, of which four are highly conserved residues across all the analyzed homologs of UMAMIT29. A comparison of the putative substrate binding site of homologs within the brassicaceous-specific, glucosinolate-transporting clade with the non-brassicaceous-specific, non-glucosinolate-transporting UMAMIT32 clade identified 11 differentially conserved sites. When each of the 11 residues of UMAMIT29 was individually mutated into the corresponding residue in UMAMIT32, five mutant variants (UMAMIT29#V27F, UMAMIT29#M86V, UMAMIT29#L109V, UMAMIT29#Q263S, and UMAMIT29#T267Y) reduced glucosinolate transport activity over 75% compared to wild-type UMAMIT29. This suggests that these residues are key for UMAMIT29-mediated glucosinolate transport activity and thus potential targets for blocking the transport of glucosinolates to the seeds.

16.
J Exp Bot ; 62(2): 761-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21036927

RESUMO

In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Diferenciação Celular , Divisão Celular , Marcação de Genes , MicroRNAs/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética
17.
Mol Plant ; 12(11): 1474-1484, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31260813

RESUMO

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Inflorescência/citologia , Floema/citologia , Enxofre/metabolismo , Arabidopsis/imunologia , Inflorescência/metabolismo , Modelos Biológicos , Floema/metabolismo , Transporte Proteico
18.
Elife ; 62017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257001

RESUMO

Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge.


Assuntos
Evolução Molecular , Glucosinolatos/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Especificidade por Substrato
19.
Bio Protoc ; 7(22): e2615, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34595288

RESUMO

This protocol describes how to order and directly assemble uracil-containing non-clonal DNA fragments by uracil excision based cloning (USER cloning). The protocol was generated with the goal of making synthesized non-clonal DNA fragments directly compatible with USERTM cloning. The protocol is highly efficient and would be compatible with uracil-containing non-clonal DNA fragments obtained from any synthesizing company. The protocol drastically reduces time and handling between receiving the synthesized DNA fragments and transforming with vector and DNA fragment(s).

20.
Nat Plants ; 3: 16208, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28085153

RESUMO

Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.


Assuntos
Proteínas de Transporte de Ânions/genética , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Simportadores/genética , Alcaloides de Vinca/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Catharanthus/metabolismo , Monoterpenos/metabolismo , Transportadores de Nitrato , Proteínas de Plantas/metabolismo , Simportadores/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA