Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Physiol ; 192(1): 633-647, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36782397

RESUMO

Phytophthora sojae causes Phytophthora root and stem rot disease of soybean (Glycine max), leading to huge annual yield loss worldwide, but resistance to Phytophthora sojae (Rps) genes remains elusive. Soybean cultivar "Yudou 29" is resistant to P. sojae strain PsMC1, and this study aimed to clone, identify, and characterize the Rps gene in Yudou 29 (RpsYD29) and clarify its functional mechanism. We map-based cloned RpsYD29 (ZINC FINGER PROTEIN03, GmZFP03) using the families of a cross between Yudou 29 and a P. sojae-susceptible soybean cultivar "Jikedou 2". P. sojae resistance of GmZFP03 was functionally validated by stable soybean genetic transformation and allele-phenotype association analysis. GmZFP03 was identified as a C2H2-type zinc finger protein transcription factor, showing 4 amino acid residue polymorphisms (V79F, G122-, G123-, and D125V) and remarkably different expression patterns between resistant and susceptible soybeans. Notably boosted activity and gene expression of superoxide dismutase (SOD) in resistant-type GmZFP03-expressed transgenic soybean, substantial enhancement of P. sojae resistance of wild-type soybean by exogenous SOD treatment, and GmZFP03 binding to and activation of 2 SOD1 (Glyma.03g242900 and Glyma.19g240400) promoters demonstrated the involvement of SOD1s in GmZFP03-mediated resistance to P. sojae strain PsMC1. Thus, this study cloned the soybean P. sojae-resistant GmZFP03, the product of which specifically targets 2 SOD1 promoters. GmZFP03 can be directly used for precise P. sojae-resistance soybean breeding.


Assuntos
Glycine max , Phytophthora , Glycine max/genética , Superóxidos , Resistência à Doença/genética , Phytophthora/fisiologia , Superóxido Dismutase-1 , Melhoramento Vegetal , Doenças das Plantas/genética
2.
Plant Cell ; 32(5): 1397-1413, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32102844

RESUMO

Maize (Zea mays) is one of the most important crops in the world. However, few agronomically important maize genes have been cloned and used for trait improvement, due to its complex genome and genetic architecture. Here, we integrated multiplexed CRISPR/Cas9-based high-throughput targeted mutagenesis with genetic mapping and genomic approaches to successfully target 743 candidate genes corresponding to traits relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing, 412 edited sequences covering 118 genes were precisely identified from individuals showing clear phenotypic changes. The profiles of the associated gene-editing events were similar to those identified in human cell lines and consequently are predictable using an existing algorithm originally designed for human studies. We observed unexpected but frequent homology-directed repair through endogenous templates that was likely caused by spatial contact between distinct chromosomes. Based on the characterization and interpretation of gene function from several examples, we demonstrate that the integration of forward and reverse genetics via a targeted mutagenesis library promises rapid validation of important agronomic genes for crops with complex genomes. Beyond specific findings, this study also guides further optimization of high-throughput CRISPR experiments in plants.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Genes de Plantas , Mutagênese/genética , Característica Quantitativa Herdável , Zea mays/genética , Sequência de Bases , Reparo do DNA/genética , Edição de Genes , Mutação/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Reprodutibilidade dos Testes , Moldes Genéticos , Transformação Genética
3.
J Integr Plant Biol ; 65(4): 907-917, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36478145

RESUMO

Cotton (Gossypium spp.) is one of the most important fiber crops worldwide. In the last two decades, transgenesis and genome editing have played important roles in cotton improvement. However, genotype dependence is one of the key bottlenecks in generating transgenic and gene-edited cotton plants through either particle bombardment or Agrobacterium-mediated transformation. Here, we developed a shoot apical meristem (SAM) cell-mediated transformation system (SAMT) that allowed the transformation of recalcitrant cotton genotypes including widely grown upland cotton (Gossypium hirsutum), Sea island cotton (Gossypium barbadense), and Asiatic cotton (Gossypium arboreum). Through SAMT, we successfully introduced two foreign genes, GFP and RUBY, into SAM cells of some recalcitrant cotton genotypes. Within 2-3 months, transgenic adventitious shoots generated from the axillary meristem zone could be recovered and grown into whole cotton plants. The GFP fluorescent signal and betalain accumulation could be observed in various tissues in GFP- and RUBY-positive plants, as well as in their progenies, indicating that the transgenes were stably integrated into the genome and transmitted to the next generation. Furthermore, using SAMT, we successfully generated edited cotton plants with inheritable targeted mutagenesis in the GhPGF and GhRCD1 genes through CRISPR/Cas9-mediated genome editing. In summary, the established SAMT transformation system here in this study bypasses the embryogenesis process during tissue culture in a conventional transformation procedure and significantly accelerates the generation of transgenic and gene-edited plants for genetic improvement of recalcitrant cotton varieties.


Assuntos
Edição de Genes , Gossypium , Edição de Genes/métodos , Gossypium/genética , Sistemas CRISPR-Cas/genética , Plantas Geneticamente Modificadas/genética , Genótipo , Transformação Genética
4.
Plant J ; 101(2): 278-292, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529523

RESUMO

The nutritional traits of maize kernels are important for human and animal nutrition, and these traits have undergone selection to meet the diverse nutritional needs of humans. However, our knowledge of the genetic basis of selecting for kernel nutritional traits is limited. Here, we identified both single and epistatic quantitative trait loci (QTLs) that contributed to the differences of oil and carotenoid traits between maize and teosinte. Over half of teosinte alleles of single QTLs increased the values of the detected oil and carotenoid traits. Based on the pleiotropism or linkage information of the identified single QTLs, we constructed a trait-locus network to help clarify the genetic basis of correlations among oil and carotenoid traits. Furthermore, the selection features and evolutionary trajectories of the genes or loci underlying variations in oil and carotenoid traits revealed that these nutritional traits produced diverse selection events during maize domestication and improvement. To illustrate more, a mutator distance-relative transposable element (TE) in intron 1 of DXS2, which encoded a rate-limiting enzyme in the methylerythritol phosphate pathway, was identified to increase carotenoid biosynthesis by enhancing DXS2 expression. This TE occurs in the grass teosinte, and has been found to have undergone selection during maize domestication and improvement, and is almost fixed in yellow maize. Our findings not only provide important insights into evolutionary changes in nutritional traits, but also highlight the feasibility of reintroducing back into commercial agricultural germplasm those nutritionally important genes hidden in wild relatives.


Assuntos
Domesticação , Fenótipo , Locos de Características Quantitativas/genética , Zea mays/genética , Agricultura , Carotenoides , Mapeamento Cromossômico , Cromossomos de Plantas , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Íntrons , Seleção Genética
5.
Plant Biotechnol J ; 19(6): 1195-1205, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33386670

RESUMO

Low grain moisture at harvest is crucial for safe production, transport and storage, but the genetic architecture of this trait in maize (Zea mays) remains elusive. Here, we measured the dynamic changes in grain moisture content in an association-mapping panel of 513 diverse maize inbred lines at five successive stages across five geographical environments. Genome-wide association study (GWAS) revealed 71 quantitative trait loci (QTLs) that influence grain moisture in maize. Epistatic effects play vital roles in the variability in moisture levels, even outperforming main-effect QTLs during the early dry-down stages. Distinct QTL-environment interactions influence the spatio-temporal variability of maize grain moisture, which is primarily triggered at specific times. By combining genetic population analysis, transcriptomic profiling and gene editing, we identified GRMZM5G805627 and GRMZM2G137211 as candidate genes underlying major QTLs for grain moisture in maize. Our results provide insights into the genetic architecture of dynamic changes in grain moisture, which should facilitate maize breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Sementes/genética , Zea mays/genética
6.
Plant Physiol ; 183(4): 1696-1709, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482908

RESUMO

In maize (Zea mays), kernel weight is an important component of yield that has been selected during domestication. Many genes associated with kernel weight have been identified through mutant analysis. Most are involved in the biogenesis and functional maintenance of organelles or other fundamental cellular activities. However, few quantitative trait loci (QTLs) underlying quantitative variation in kernel weight have been cloned. Here, we characterize a QTL, qKW9, associated with maize kernel weight. This QTL encodes a DYW motif pentatricopeptide repeat protein involved in C-to-U editing of ndhB, a subunit of the chloroplast NADH dehydrogenase-like complex. In a null qkw9 background, C-to-U editing of ndhB was abolished, and photosynthesis was reduced, resulting in less maternal photosynthate available for grain filling. Characterization of qKW9 highlights the importance of optimizing photosynthesis for maize grain yield production.


Assuntos
Locos de Características Quantitativas/genética , Zea mays/fisiologia , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Zea mays/genética , Zea mays/metabolismo
9.
Int J Biol Macromol ; 273(Pt 2): 133179, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880448

RESUMO

Drought stress is the main factor restricting maize yield. Poly-γ-glutamic acid (γ-PGA), as a water-retaining agent and fertilizer synergist, could significantly improve the drought resistance and yield of many crops. However, its high production costs and unclear long-term impact on soil ecology limit its large-scale application. In this study, an environmentally friendly green material γ-PGA was heterologous synthesized in maize for the first time using the synthetic biology method. The genes (PgsA, PgsB, PgsC) participated in γ-PGA synthesis were cloned from Bacillus licheniformis and transformed into maize to produce γ-PGA for the first time. Under drought stress, transgenic maize significantly increased the ear length, ear weight and grain weight by 50 % compared to the control, whereas the yield characteristic of ear weight, grain number per ear, grain weight per ear and 100-grain weight increased by 1.67 %-2.33 %, 3.78 %-13.06 %, 8.41 %-22.06 %, 6.03 %-19.28 %, and 11.85 %-18.36 %, respectively under normal growth conditions. γ-PGA was mainly expressed in the mesophyll cells of maize leaf rosette structure and improved drought resistance and yield by protecting and increasing the expression of genes for the photosynthetic and carbon fixation. This study is an important exploration for maize drought stress molecular breeding and building resource-saving agriculture.

10.
Int J Biol Macromol ; 262(Pt 1): 130026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336313

RESUMO

Three genes involved in poly-γ-glutamic acid(γ-PGA)synthesis cloned from Bacillus licheniformis were transformed into cucumber for the first time. Compared with control, its water content increased by 6-14 % and water loss rate decreased by 11-12 %. In zebrafish and human skin experiments, the moisturizing effect of transgenic cucumber was significantly higher than that of CK, γ-PGA and hyaluronic acid group. Transgenic cucumber reduced facial wrinkles and roughness by 19.58 % and 24.97 %, reduced skin melanin content by 5.27 %, increased skin topological angle and L-value by 5.89 % and 2.49 %, and increased the R2 and Q1 values of facial elasticity by 7.67 % and 5.64 %, respectively. The expressions of aqp3, Tyr, silv and OCA2 were down-regulated, eln1, eln2, col1a1a and col1a1b were up-regulated in zebrafish after treated with transgenic cucumber. This study provides an important reference for the endogenous synthesis of important skin care functional molecules in plants.


Assuntos
Cucumis sativus , Ácido Poliglutâmico/análogos & derivados , Humanos , Animais , Cucumis sativus/genética , Cucumis sativus/metabolismo , Ácido Glutâmico , Peixe-Zebra/metabolismo , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/metabolismo , Água/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Peixe-Zebra/metabolismo
11.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36771777

RESUMO

This paper aims at solving the material durability problem caused by spraying deicing salt on pavement concrete in the northern winter. Super absorbent polymer (SAP) was adopted as an internal curing agent to enhance the durability of pavement concrete. Curing parameters including particle size and dosage of SAP and curing condition were optimized based on mortar tests by means of the grey target decision method. The deterioration rule of durability and mechanical properties of pavement concrete internally cured by different SAP dosages after salt freeze-thaw cycles were explored through rapid freeze-thaw test. Combined with the characteristics of pore structure, hydration and microstructure, the influence mechanism of SAP on the salt freeze-thaw resistance of pavement concrete was revealed. The experimental results showed that: (i) The reduction in mass loss rate and relative dynamic modulus was significantly improved by SAP internal curing with moderate dosage; (ii) The more freeze-thaw cycles the specimen underwent, the greater the increase in strength; (iii) After 75 cycles, the chloride ion erosion depth could be decreased by approximately 23.18%. Moreover, the addition of SAP could refine the pore size, inhibit the generation of shrinkage microcracks, and promote the degree of cement hydration in the late stage, which improved the internal density of the cement concrete structure. Therefore, the deterioration of pavement under the coupling effect of salt freeze-thaw was reduced.

12.
Appl Biochem Biotechnol ; 194(10): 4817-4835, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35666378

RESUMO

Cold plasma pretreatment has the potential of anti-aging. However, its molecular mechanism is still not clear. Here, cold plasma pretreatment was firstly used to investigate the anti-aging effects of Caenorhabditis elegans using transcriptomic technique. It showed that the optimal parameters of discharge power, processing time, and working pressure for cold plasma pretreatment were separately 100 W, 15 s, and 135 Pa. The released 0.32 mJ/cm2 of the moderate apparent energy density was possibly beneficial to the strong positive interaction between plasma and C. elegans. The longest lifespan (13.67 ± 0.50 for 30 days) was obviously longer than the control (10.37 ± 0.46 for 23 days). Furthermore, compared with the control, frequencies of head thrashes with an increase of 26.01% and 37.31% and those of body bends with an increase of 33.37% and 34.51% on the fourth and eighth day, respectively, indicated movement behavior was improved. In addition, the variation of the enzyme activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) hinted that the cold plasma pretreatment contributed to the enhanced anti-aging effects in nematodes. Transcriptomics analysis revealed that cold plasma pretreatment resulted in specific gene expression. Anatomical structure morphogenesis, response to stress, regulation of biological quality, phosphate-containing compound metabolic process, and phosphorus metabolic process were the most enriched biological process for GO analysis. Cellular response to heat stress and HSF1-dependent transactivation were the two most enriched KEGG pathways. This work would provide the methodological basis using cold plasma pretreatment and the potential gene modification targets for anti-aging study.


Assuntos
Proteínas de Caenorhabditis elegans , Gases em Plasma , Envelhecimento , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia , Catalase/metabolismo , Longevidade , Malondialdeído/metabolismo , Estresse Oxidativo , Fosfatos/metabolismo , Fósforo/metabolismo , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vácuo
13.
Hortic Res ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048122

RESUMO

Fruits and vegetables in the Cucurbitaceae family contribute greatly to the human diet, for example, cucumber, melon, watermelon and squash. The widespread use of genome editing technologies has greatly accelerated the functional characterization of genes as well as crop improvement. However, most economically important cucurbit plants, including melon and squash, remain recalcitrant to standard Agrobacterium tumefaciens-mediated transformation, which limits the effective use of genome editing technology. In this study, we describe the "optimal infiltration intensity" strategy to establish an efficient genetic transformation system for melon and squash. We harnessed the power of this method to target homologs of the ERECTA family of receptor kinase genes and created alleles resulting in a compact plant architecture with shorter internodes in melon, squash and cucumber. The optimized transformation method presented here allows stable CRISPR/Cas9-mediated mutagenesis and will lay a solid foundation for functional gene manipulation in cucurbit crops.

14.
Nat Commun ; 13(1): 4498, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922428

RESUMO

Unilateral cross incompatibility (UCI) occurs between popcorn and dent corn, and represents a critical step towards speciation. It has been reported that ZmGa1P, encoding a pectin methylesterase (PME), is a male determinant of the Ga1 locus. However, the female determinant and the genetic relationship between male and female determinants at this locus are unclear. Here, we report three different types, a total of seven linked genes underlying the Ga1 locus, which control UCI phenotype by independently affecting pollen tube growth in both antagonistic and synergistic manners. These include five pollen-expressed PME genes (ZmGa1Ps-m), a silk-expressed PME gene (ZmPME3), and another silk-expressed gene (ZmPRP3), encoding a pathogenesis-related (PR) proteins. ZmGa1Ps-m confer pollen compatibility. Presence of ZmPME3 causes silk to reject incompatible pollen. ZmPRP3 promotes incompatibility pollen tube growth and thereby breaks the blocking effect of ZmPME3. In addition, evolutionary genomics analyses suggest that the divergence of the Ga1 locus existed before maize domestication and continued during breeding improvement. The knowledge gained here deepen our understanding of the complex regulation of cross incompatibility.


Assuntos
Proteínas de Plantas , Autoincompatibilidade em Angiospermas , Zea mays , Células Germinativas Vegetais/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Autoincompatibilidade em Angiospermas/genética , Seda/genética , Seda/metabolismo , Zea mays/genética
15.
J Exp Bot ; 61(4): 1193-203, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20054032

RESUMO

Cotton fibres originate from the outer ovule integument and D-lineage genes are essential for ovule development and their roles can be described by the 'ABCDE' model of flower development. To investigate the role of D-lineage genes during ovule and fibre development, GbAGL1 (GenBank accession number: FJ198049) was isolated from G. barbadense by using the SMART RACE strategy. Sequence and phylogenetic analyses revealed that GbAGL1 was a member of the D-lineage gene family. Southern blot analysis showed that GbAGL1 belonged to a low-copy gene family. Semi-quantitative RT-PCR and RNA in situ hybridization analyses revealed that the GbAGL1 gene in G. barbadense was highly expressed in whole floral bud primordia and the floral organs including ovules and fibres, but the signals were barely observed in vegetative tissues. GbAGL1 expression increased gradually with the ovule developmental stages. Over-expression of GbAGL1 in Arabidopsis caused obvious homeotic alternations in the floral organs, such as early flowering, and an extruded stigma, which were the typical phenotypes of the D-lineage gene family. In addition, a complementation test revealed that GbAGL1 could rescue the phenotypes of the stk mutant. Our study indicated that GbAGL1 was a D-lineage gene that was involved in ovule development and might play key roles in fibres development.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Gossypium/química , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Dados de Sequência Molecular , Óvulo Vegetal/química , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/classificação , Plantas/genética , Homologia de Sequência de Aminoácidos
17.
J Biosci ; 34(6): 941-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20093747

RESUMO

An AGAMOUS (AG)-like gene, GbAGL2, was isolated from Gossypium barbadense and characterized. Alignment and phylogenetic analysis indicated that GbAGL2 shared high homology with AG-subfamily genes and belonged to a C-class gene family. DNA gel blot analysis showed that GbAGL2 belonged to a low-copy gene family. Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) revealed that GbAGL2 was highly expressed in reproductive tissues including ovules and carpels, but barely expressed in vegetative tissues. In addition, GbAGL2 expression in a cotton cultivar XuZhou142 (wt) (XZ142, G. hirsutum L.) and its fibreless mutant XZ142 (fl) was examined. RNA in situ hybridization analysis indicated that GbAGL2 transcripts were preferentially restricted to outer ovule integuments, carpels and fibres. These expression patterns implied that GbAGL2 might participate in the development of the carpel and ovule. Furthermore, Arabidopsis transformation was performed and modifications occurred in flowers, and the silique length of transgenic plants also increased slightly, suggesting that the GbAGL2 gene may have a positive effect on the development of the ovary or ovule. Our findings suggest that GbAGL2 might not only specify the identity of floral organs but also play a potential key role in ovary or fibre development in cotton.


Assuntos
Genes de Plantas , Gossypium/genética , Gossypium/metabolismo , Sequência de Aminoácidos , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/anatomia & histologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA