Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38924496

RESUMO

RATIONALE: Outdoor fine particulate air pollution (PM2.5) contributes to millions of deaths around the world each year, but much less is known about the long-term health impacts of other particulate air pollutants including ultrafine particles (a.k.a. nanoparticles) which are in the nanometer size range (<100 nm), widespread in urban environments, and not currently regulated. OBJECTIVES: Estimate the associations between long-term exposure to outdoor ultrafine particles and mortality. METHODS: Outdoor air pollution levels were linked to the residential addresses of a large, population-based cohort from 2001 - 2016. Associations between long-term exposure to outdoor ultrafine particles and nonaccidental and cause-specific mortality were estimated using Cox proportional hazards models. MEASUREMENTS: An increase in long-term exposure to outdoor ultrafine particles was associated with an increased risk of nonaccidental mortality (Hazard Ratio = 1. 073, 95% Confidence Interval = 1. 061, 1. 085) and cause-specific mortality, the strongest of which was respiratory mortality (Hazard Ratio = 1.174, 95% Confidence Interval = 1.130, 1.220). MAIN RESULTS: Long-term exposure to outdoor ultrafine particles was associated with increased risk of mortality. We estimated the mortality burden for outdoor ultrafine particles in Montreal and Toronto, Canada to be approximately 1100 additional nonaccidental deaths every year. Furthermore, we observed possible confounding by particle size which suggests that previous studies may have underestimated or missed important health risks associated with ultrafine particles. CONCLUSIONS: As outdoor ultrafine particles are not currently regulated, there is great potential for future regulatory interventions to improve population health by targeting these common outdoor air pollutants.

2.
Environ Sci Technol ; 58(18): 7814-7825, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668733

RESUMO

This study was set in the Greater Toronto and Hamilton Area (GTHA), where commercial vehicle movements were assigned across the road network. Implications for greenhouse gas (GHG) emissions, air quality, and health were examined through an environmental justice lens. Electrification of light-, medium-, and heavy-duty trucks was assessed to identify scenarios associated with the highest benefits for the most disadvantaged communities. Using spatially and temporally resolved commercial vehicle movements and a chemical transport model, changes in air pollutant concentrations under electric truck scenarios were estimated at 1-km2 resolution. Heavy-duty truck electrification reduces ambient black carbon and nitrogen dioxide on average by 10 and 14%, respectively, and GHG emissions by 10.5%. It achieves the highest reduction in premature mortality attributable to fine particulate matter chronic exposure (around 200 cases per year) compared with light- and medium-duty electrification (less than 150 cases each). The burden of all traffic in the GTHA was estimated to be around 600 cases per year. The benefits of electrification accrue primarily in neighborhoods with a high social disadvantage, measured by the Ontario Marginalization Indices, narrowing the disparity of exposure to traffic-related air pollution. Benefits related to heavy-duty truck electrification reflect the adverse impacts of diesel-fueled freight and highlight the co-benefits achieved by electrifying this sector.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos , Veículos Automotores , Material Particulado , Gases de Efeito Estufa , Humanos , Ontário
3.
Environ Sci Technol ; 56(18): 12886-12897, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044680

RESUMO

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved R2 = 0.66 and RMSE = 9391.8#/cm3 (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise
4.
Glob Chang Biol ; 27(21): 5564-5579, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453365

RESUMO

Ocean acidification in nitrogen-enriched estuaries has raised global concerns. For decades, biotic and abiotic denitrification in estuarine sediments has been regarded as the major ways to remove reactive nitrogen, but they occur at the expense of releasing greenhouse gas nitrous oxide (N2 O). However, how these pathways respond to acidification remains poorly understood. Here we performed a N2 O isotopocules analysis coupled with respiration inhibition and molecular approaches to investigate the impacts of acidification on bacterial, fungal, and chemo-denitrification, as well as N2 O emission, in estuarine sediments through a series of anoxic incubations. Results showed that acidification stimulated N2 O release from sediments, which was mainly mediated by the activity of bacterial denitrifiers, whereas in neutral environments, N2 O production was dominated by fungi. We also found that the contribution of chemo-denitrification to N2 O production cannot be ignored, but was not significantly affected by acidification. The mechanistic investigation further demonstrated that acidification changed the keystone taxa of sedimentary denitrifiers from N2 O-reducing to N2 O-producing ones and reduced microbial electron-transfer efficiency during denitrification. These findings provide novel insights into how acidification stimulates N2 O emission and modulates its pathways in estuarine sediments, and how it may contribute to the acceleration of global climate change in the Anthropocene.


Assuntos
Desnitrificação , Água do Mar , Bactérias/genética , Concentração de Íons de Hidrogênio , Nitrogênio , Óxido Nitroso
5.
Environ Monit Assess ; 193(9): 587, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415446

RESUMO

This study harnesses the power of mobile data in developing a spatial model for predicting black carbon (BC) concentrations within one of the most heavily populated regions in the Middle East and North Africa MENA region, Greater Cairo Region (GCR) in Egypt. A mobile data collection campaign was conducted in GCR to collect BC measurements along specific travel routes. In total, 3,300 km were travelled across a widespread 525 km of routes. Reported average BC values were around 20 µg/m3, announcing an alarming order of magnitude value when compared to the maximum reported values in similar studies. A bi-directional stepwise land use regression (LUR) model was developed to select the best combination of explanatory variables and generate an exposure surface for BC, in addition to a number of machine learning models (random forest gradient boost, light gradient boost model (LightGBM), Keras neural network (NN)). Data from 7 air quality (AQ) stations were compared-in terms of mean square error (MSE) and mean absolute error (MAE)-with predictions from the LUR and the NN model. The NN model estimated higher BC concentrations in the downtown areas, while lower concentrations are estimated for the peripheral area at the east side of the city. Such results shed light on the credibility of the LUR models in generating a general spatial trend of BC concentrations while the superiority of NN in BC accuracy estimation (0.023 vs 0.241 in terms of MSE and 0.12 vs 0.389 in terms of MAE; of NN vs LUR respectively).


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Carbono , Egito , Monitoramento Ambiental , Material Particulado/análise
6.
Waste Manag Res ; 39(12): 1440-1450, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33860697

RESUMO

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


Assuntos
Carbono , Pirólise , Reciclagem , Borracha
7.
Environ Sci Technol ; 52(6): 3512-3519, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29473418

RESUMO

Land-use regression (LUR) models of air pollutants are frequently developed on the basis of short-term stationary or mobile monitoring approaches, which raises the question of whether these two data collection protocols lead to similar exposure surfaces. In this study, we measured ultrafine particles (UFP) and black carbon (BC) concentrations in Toronto during summer 2016, using two short-term data collection approaches: mobile, involving 3023 road segments sampled on bicycles, and stationary, involving 92 sidewalk locations. We developed four LUR models and exposure surfaces, for the two pollutants and measurement protocols. Coefficients of determination ( R2) varied from 0.434 to 0.525. Various small-scale traffic variables were included in the mobile LUR. Pearson correlation coefficients between the mobile and stationary surfaces were 0.23 for UFP and 0.49 for BC. We also compared the two surfaces using personal exposures from a panel study in Toronto conducted during the same period. The personal exposures differed from the outdoor exposures derived from the combination of GPS information and exposure surfaces. For UFP, the median for personal outdoor exposure was 26 344 part/cm3, while the cycling and stationary surfaces predicted medians of 31 201 and 19 057 part/cm3. Similar trends were observed for BC, with median exposures of 1764 (personal), 1799 (cycling), and 1469 ng/m3 (stationary).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estações do Ano , Fuligem
8.
Sci Total Environ ; 915: 170075, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232822

RESUMO

An important challenge for studies of air pollution and health effects is the derivation of historical exposures. These generally entail some form of backcasting, which refers to a range of approaches that aim to project a current surface into the past. Accurate backcasting is conditional upon the availability of historical data for predictor variables and the ability to capture spatial and temporal trends in these variables. This study proposes a method to backcast traffic-related air pollution surfaces developed using land-use regression models by including temporal variability of traffic and emissions and trends in concentrations measured at reference stations. Nitrogen dioxide (NO2) concentrations collected in the City of Toronto using the Urban Scanner mobile platform were adjusted for historical trends captured at reference stations. The Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), a powerful tool for time series decomposition, was employed to isolate seasonal variations, annual trends, and abrupt changes in NO2 at reference stations, hence decomposing the signal. Exposure surfaces were generated for a period extending from 2006 to 2020, exhibiting decreases ranging from 10 to 50 % depending on the neighborhood, with an average of 20.46 % across the city. Yearly surfaces were intersected with mobility patterns of Torontonians extracted from travel survey data for 2006 and 2016, illustrating strong spatial gradients in the evolution of NO2 over time, with larger decreases along major roads and highways and in the central core. These findings demonstrate that air pollution improvements throughout the 14 years are inhomogeneous across space.

9.
Sci Total Environ ; 920: 170947, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367734

RESUMO

Understanding the relationships between ultrafine particle (UFP) exposure, socioeconomic status (SES), and sustainable transportation accessibility in Toronto, Canada is crucial for promoting public health, addressing environmental justice, and ensuring transportation equity. We conducted a large-scale mobile measurement campaign and employed a gradient boost model to generate exposure surfaces using land use, built environment, and meteorological conditions. The Ontario Marginalization Index was used to quantify various indicators of social disadvantage for Toronto's neighborhoods. Our findings reveal that people in socioeconomically disadvantaged areas experience elevated UFP exposures. We highlight significant disparities in accessing sustainable transportation, particularly in areas with higher ethnic concentrations. When factoring in daily mobility, UFP exposure disparities in disadvantaged populations are further exacerbated. Furthermore, individuals who do not generate emissions themselves are consistently exposed to higher UFPs, with active transportation users experiencing the highest UFP exposures both at home and at activity locations. Finally, we proposed a novel index, the Community Prioritization Index (CPI), incorporating three indicators, including air quality, social disadvantage, and sustainable transportation. This index identifies neighborhoods experiencing a triple burden, often situated near major infrastructure hubs with high diesel truck activity and lacking greenspace, marking them as high-priority areas for policy action and targeted interventions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Material Particulado/análise , Poluição do Ar/análise , Ontário , Pobreza
10.
Environ Int ; 178: 108106, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544265

RESUMO

BACKGROUND: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly within cities and long-term exposures to these pollutants have been associated with a variety of adverse health outcomes. OBJECTIVE: This study integrated multiple approaches to develop new models to estimate within-city spatial variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in Canada's two largest cities, Montreal and Toronto. METHODS: We conducted year-long mobile monitoring campaigns in each city that included evenings and weekends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed final combined models. RESULTS: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1-2 percentage points) for the combined models than the generalized additive models and a greater (approximately 10 percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models were highly correlated with each other and differences between models were explored in sensitivity analyses. CONCLUSION: Predictions from these models are available to support future epidemiological research examining long-term health impacts of outdoor UFPs and BC.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Canadá , Poluentes Ambientais/análise , Fuligem/análise , Tamanho da Partícula , Poluição do Ar/análise
11.
Environ Pollut ; 317: 120720, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442817

RESUMO

This paper describes a mobile air pollution sampling system, the Urban Scanner, which aims at gathering dense spatiotemporal air quality data to support urban air quality and exposure science. Urban Scanner comprises custom vehicle-mounted sensors for air pollution, meteorology, and built environment data collection (low-cost sensors, wind anemometer, 360 deg camera, LIDAR, GPS) as well as a server to store, process, and map all gathered geo-referenced sensory information. Two levels of sensor calibration were implemented, both in a chamber and in the field, against reference instrumentation. Chamber tests and a set of mathematical tools were developed to correct for sensor noise (wavelet denoising), misalignment (linear and nonlinear), and hysteresis removal. Models based on chamber testing were further refined based on field co-location. While field co-location captures natural changes in air pollution and meteorology, chamber tests allow for simulating fast transitions in these variables, like the transitions experienced by a mobile sensor in an urban environment. The best suite of models achieved an R2 higher than 0.9 between sensor output and reference station observations and an RMSE of 2.88 ppb for nitrogen dioxide and 4.03 ppb for ozone. A mobile sampling campaign was conducted in the city of Toronto, Canada, to further test Urban Scanner. We observe that the platform adequately captures spatial and temporal variability in urban air pollution, leading to the development of land-use regression models with high explanatory power.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Calibragem , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-35742559

RESUMO

Eco-driving guidance refers to courses, warnings, or suggestions provided to human drivers to improve driving behaviour to enable less energy use and emissions. This paper reviews existing eco-driving guidance studies and identifies challenges to tackle in the future. We summarize two categories of current guidance systems, static and dynamic, distinguished by whether real-world driving records are used to generate behaviour guidance or not. We find that influencing factors, such as the content of suggestions, the display methods, and drivers' socio-demographic characteristics, have varied effects on the guidance results across studies. Drivers are reported to have basic eco-driving knowledge, while the question of how to motivate the acceptance and practice of such behaviour, especially in the long term, is overlooked. Adaptive driving suggestions based on drivers' individual habits can improve the effectiveness and acceptance while this field is under investigation. In-vehicle assistance presents potential safety issues, and visualized in-vehicle assistance is reported to be most distractive. Given existing studies focusing on the operational level, a common agreement on the guidance design and associated influencing factors has yet to be reached. Research on the systematic and tactical design of eco-driving guidance and in-vehicle interaction is advised.


Assuntos
Condução de Veículo , Acidentes de Trânsito/prevenção & controle , Humanos
13.
Sci Total Environ ; 811: 152323, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910946

RESUMO

Driving behavior and speed enforcement are both important to road safety and affect vehicle exhaust emissions. Relationships between driving characteristics and safety or emissions have been assessed in multiple studies. However, there is scant information on whether safe driving also reduces emissions and how this relationship changes across urban areas. This study makes use of two similar GPS datasets collected in the metropolitan areas of Toronto and Beijing to conduct a comparative analysis of driving characteristics, speed limit violations, and emissions. Emissions for all trips were computed using the same emission rate database derived from a Portable Emissions Monitoring System (PEMS). We observe that the average speeds in the two cities are close to 25 km/h. In Toronto, the fraction of time spent at speeds over 80 km/h on expressways is 40% higher than in Beijing. We also note a higher level of accelerations in Toronto. The trips in Beijing have approximately 14%, 57%, 14%, and 21% lower emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and particle number (PN), respectively. Drivers in Toronto violate speed limits in 93% of their trips for 21% of trip travel time while the numbers for Beijing are 43% and 4%. These differences are not necessarily due to driving behavior, but rather to driving characteristics, which encompass the effects of behavior, road network design, traffic congestion, trip patterns, and speed enforcement. A scenario was evaluated by reconstructing drive-cycles to assess the effects of speed limit enforcement for trips where violations were detected. In Toronto, if obeying the speed limit, the mean trip travel time was estimated to increase by 1.8 min. In contrast, trip emissions of CO2, CO, NOx, and PN were found to decrease, on average, by 5.2%, 19.1%, 5.2%, and 2.9%, respectively. Speed limit enforcement can result in lower emissions, by reducing aggressive accelerations.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Pequim , Cidades , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
14.
Sci Total Environ ; 805: 150407, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818772

RESUMO

In this study, driving trajectory data from private vehicles were collected in Toronto, Canada to construct representative local drive cycles. In addition, real-driving emission testing for four conventional gasoline vehicles (ICEV) and one hybrid electric vehicle (HEV) was conducted in the same region using a Portable Emissions Measurement System. Instantaneous fuel consumption and emissions of Carbon Monoxide (CO), Nitrogen Oxides (NOx), and Particle Number (PN) were measured. The results for all vehicles indicate that the acceleration state tends to generate the highest emissions and fuel consumption with the largest variation due to higher power demand. When accelerating, the HEV was observed to generate four times more CO emissions than some ICEVs. Instantaneous fuel consumption and emissions were analyzed as a function of operating modes to estimate the fuel efficiency (FE) and emission factors (EF) associated with six representative local drive cycles and four regulatory drive cycles. With most regulatory drive cycles, vehicles can reach the labeled FE and EPA emission limits, except under the New York City Cycle with frequent stop-and-go conditions. In contrast, except for highway cycles, the FE of Toronto-specific drive cycles can hardly meet the labeled values. CO EFs of the HEV can be higher than ICEVs, while it is lower than the emission limit by 42% on average. ICEVs may exceed the CO limit by 131% under local highway cycles, while they can violate NOx and PN limits under local arterial cycles. The result of this study emphasizes the importance of local drive cycles and real driving emission tests.


Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Gasolina/análise , Veículos Automotores , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise
15.
Sci Total Environ ; 760: 143402, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33221006

RESUMO

Studies have demonstrated that vehicles with gasoline direct injection (GDI) engines produce significantly higher emissions during a cold start than under hot-stabilized periods. A cold start is typically defined by the temperature of the engine or the catalytic converter; its extended effect on emissions, after the vehicle reaches the warm-up stage, has seldom been investigated. In this study, the influence of the post cold start period on nitrogen oxides (NOx) emissions was evaluated using real-world measurements. Vehicle on-board diagnostic data, fuel consumption, and emissions of multiple pollutants were collected on a 2020 GDI sports utility vehicle equipped with a Portable Emission Measurement System (PEMS). A total of 31 trips, with two drives per day, were conducted along arterial roads and highways in Toronto, Canada. The results indicate that during the first trip of the day after an overnight soak, the average NOx emission rate was 0.27 g/litre and 0.037 g/km, 384% and 299% higher than the emission rate on the second trip of the day. The amount of trip total NOx emissions is positively associated with the length of the catalytic converter warm-up period with correlation coefficient 0.67. We also observe that the catalyst warm-up time is negatively correlated with ambient temperature, and a negative relationship between ambient temperature and NOx emissions throughout the trip is depicted with correlation coefficient -0.44. The measured data reveal an extended effect of the cold start on NOx emissions even after the temperatures of the engine coolant and catalyst reach a stable level.

16.
Sci Total Environ ; 793: 148597, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182453

RESUMO

Decades of researches have proved that pyrolysis can not only realize the harmless disposal of waste tire, but also carry out the goal of waste resource utilization via recycling pyrolytic products (e.g. pyrolytic carbon black, CBp). The current work studied the effect of CBp obtained from the commercial scale pyrolysis of waste tire, on the properties of natural rubber and butadiene rubber. CBp was incorporated into a carbon black quality identification standard formula in combination with N234 commercial carbon black (cCB) first. After screening a better substitution ratio, the composite material of CBp and cCB was mixed with more additives, and the experiment was carried out with a real production formula. To restore the practical production situation, the experiment process adopts the most commonly used process to avoid major changes in commercial production. CBp was tested at increasing loading levels as partial or full replacement of cCB. The physico-mechanical properties of the rubber compounds were studied by tests of physical, mechanical, and vulcanization properties. With the increase in the amount of CBp added, the physical and mechanical properties of the rubber compound showed a trend of slightly increasing first and then rapidly decreasing. The addition of CBp can increase the yield strength and stiffness of the rubber, but it may also lead to a decrease in hardness. Meanwhile, the substitution ratio of CBp up to 50% has been proven to improve safety and achieve a more stable vulcanization process of rubber compounds. CBp can replace up to half of cCB without significantly reducing the quality of tire rubber. The economic value of partial replacement of cCB by CBp has also been evaluated, demonstrating that adding a small amount of CBp can directly reduce the cost of raw materials, indirectly reduce the use of fossil energy promoting carbon dioxide reduction worldwide.


Assuntos
Pirólise , Fuligem , Reciclagem , Borracha
17.
Sci Total Environ ; 772: 145507, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770869

RESUMO

Environmental problems caused by waste tires have become so glaring that it has attracted wide attention. This case study seeks to examine the properties of carbon black from waste tires continuous commercial scale pyrolysis. This work aims to contribute to this growing area of research by exploring the difference between the properties of products under the condition of mass production and those under the condition of laboratory scale or pilot scale production. A pyrolysis prototype, with a waste tire mass flow rate of 50-60 t d-1 was constructed and introduced. Steel-included tire granulates were pyrolyzed in micro-negative pressure furnace at about 420 ± 20 °C. This kind of nonstripping, micro-negative pressure and low-temperature continuous thermal pyrolysis technology can reduce the stripping process between rubber and steel wire, reduce the requirement of equipment sealing, and improve the utilization rate of resources. All three products including pyrolytic carbon black (CBp), tire pyrolysis oil (TPO) and pyrolysis gas showed good characteristics. Pyrolysis gas had been successfully re-used for pyrolysis furnaces and dryers. The higher heating value of TPO estimated to 37-40 MJ/ kg, which was comparable to diesel fuel through further treatment. Results of proximate analysis, element analysis, XPS, FTIR, XRD and surface structure confirmed that CBp with commercial scale production showed no apparent data difference with those in other small scale research cases. The morphological changes of carbon black particles were suggested, revealing a possible internal structure of CBp aggregates in commercial scale pyrolysis. This study is an attempt to push the existing research in this field to commercial production. This work generates fresh insight into the viability of continuous commercial pyrolysis and demonstrates the feasibility of the operation, providing reference for many researchers and units who study the pyrolysis technology of waste tires with the feasibility of industrial production.

18.
Environ Pollut ; 284: 117145, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33910134

RESUMO

Dispersion modelling is an effective tool to estimate traffic-related fine particulate matter (PM2.5) concentrations in near-road environments. However, many sources of uncertainty and variability are associated with the process of near-road dispersion modelling, which renders a single-number estimate of concentration a poor indicator of near-road air quality. In this study, we propose an integrated traffic-emission-dispersion modelling chain that incorporates several major sources of uncertainty. Our approach generates PM2.5 probability distributions capturing the uncertainty in emissions and meteorological conditions. Traffic PM2.5 emissions from 7 a.m. to 6 p.m. were estimated at 3400 ± 117 g. Modelled PM2.5 levels were validated against measurements along a major arterial road in Toronto, Canada. We observe large overlapping areas between modelled and measured PM2.5 distributions at all locations along the road, indicating a high likelihood that the model can reproduce measured concentrations. A policy scenario expressing the impact of reductions in truck emissions revealed that a 30% reduction in near-road PM2.5 concentrations can be achieved by upgrading close to 55% of the current trucks circulating along the corridor. A speed limit reduction of 10 km/h could lead to statistically significant increases in PM2.5 concentrations at twelve out of the eighteen locations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Canadá , Monitoramento Ambiental , Material Particulado/análise , Incerteza , Emissões de Veículos/análise
19.
Environ Pollut ; 267: 115695, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254641

RESUMO

This study explores the generation of ultrafine particle emissions, measured in particle number (PN), based on a portable emissions measurement system (PEMS) in the City of Toronto between October and December 2019. Two driving routes were designed to include busy arterial roads and highways. All measurements were conducted between 10 a.m. and 4 p.m. Altogether, emissions from 31 drives were collected, leading to approximately 200,000 s of data. A spike detection algorithm was employed to isolate PN spikes in time series data. A sensitivity analysis was also conducted to identify the most optimum method for spike detection. The results indicate that the average emission rate during a PN spike is approximately 8 times the emission rate along the rest of the drive. In each test trip, about 25% of the duration was attributed to spike events, contributing 75% of total PN emissions. A Pearson correlation of 0.45 was estimated between the number of PN spikes and the number of sharp accelerations (above 8.5 km/h/s). The Pearson correlation between the occurrence of high engine torque (above 65.0 Nm) and the number of PN spikes was estimated at 0.80. The number of PN spikes was highest on arterial roads where the vehicle speed was relatively low, but with high variability, and including a high number of sharp accelerations. This pattern of UFP emissions leads to high UFP concentrations along arterial roads in the inner city core.


Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Gasolina/análise , Veículos Automotores , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
20.
Environ Pollut ; 265(Pt B): 114777, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540592

RESUMO

This study investigates the influence of meteorology, land use, built environment, and traffic characteristics on near-road ultrafine particle (UFP) concentrations. To achieve this objective, minute-level UFP concentrations were measured at various locations along a major arterial road in the Greater Toronto Area (GTA) between February and May 2019. Each location was visited five times, at least once in the morning, mid-day, and afternoon. Each visit lasted for 30 min, resulting in 2.5 h of minute-level data collected at each location. Local traffic information, including vehicle class and turning movements, were processed using computer vision techniques. The number of fast-food restaurants, cafes, trees, traffic signals, and building footprint, were found to have positive impacts on the mean UFP, while distance to the closest major road was negatively associated with UFP. We employed the Extreme Gradient Boosting (XGBoost) method to develop prediction models for UFP concentrations. The Shapley additive explanation (SHAP) measures were used to capture the influence of each feature on model output. The model results demonstrated that minute-level counts of local traffic from different directions had significant impacts on near-road UFP concentrations, model performance was robust under random cross-validation as coefficients of determination (R2) ranged from 0.63 to 0.69, but it revealed weaknesses when data at specific locations were eliminated from the training dataset. This result indicates that proper cross-validation techniques should be developed to better evaluate machine learning models for air quality predictions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA