Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39427329

RESUMO

Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.

2.
Plant J ; 106(4): 1039-1057, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33754403

RESUMO

Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.


Assuntos
Citrus sinensis/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Xanthomonas/fisiologia , Proliferação de Células , Parede Celular/metabolismo , Citrus sinensis/citologia , Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Transcriptoma , Xanthomonas/patogenicidade
3.
Transgenic Res ; 30(5): 635-647, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34076822

RESUMO

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major bacterial disease responsible for substantial economic losses in citrus-producing areas. To breed transgenic citrus plants with enhanced resistance to citrus canker, two antimicrobial peptide genes, PR1aCB and AATCB, were incorporated into 'Tarocco' blood orange (Citrus sinensis Osbeck) plants via co-transformation and sequential re-transformation. The presence of PR1aCB and AATCB in double transgenic plants was confirmed by PCR. The expression of PR1aCB and AATCB in double transformants was demonstrated by quantitative real-time PCR. An in vivo disease resistance assay involving the injection of Xcc revealed that the double transformants were more resistant to citrus canker than the single gene transformants and wild-type plants. An analysis of the bacterial population indicated that the enhanced citrus canker resistance of the double transformants was due to inhibited Xcc growth. These results proved that the pyramiding of multiple genes is a more effective strategy for increasing the disease resistance of transgenic citrus plants than single gene transformations.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Peptídeos Antimicrobianos , Citrus/genética , Citrus sinensis/genética , Melhoramento Vegetal , Doenças das Plantas/genética
4.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802058

RESUMO

Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.


Assuntos
Citrus sinensis/genética , Resistência à Doença/genética , Metiltransferases/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Citrus sinensis/microbiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Liberibacter/fisiologia , Metiltransferases/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq/métodos , Ácido Salicílico/metabolismo , Homologia de Sequência de Aminoácidos
5.
Plant Mol Biol ; 93(4-5): 341-353, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27866312

RESUMO

KEY MESSAGE: Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.


Assuntos
Citrus sinensis/genética , Proteínas de Insetos/genética , Floema/genética , Doenças das Plantas/genética , Animais , Western Blotting , Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Resistência à Doença/genética , Expressão Gênica , Interações Hospedeiro-Patógeno , Imuno-Histoquímica , Proteínas de Insetos/metabolismo , Mariposas/genética , Floema/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobiaceae/fisiologia
6.
Plant Biotechnol J ; 15(12): 1509-1519, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28371200

RESUMO

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease-susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9-targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1- allele. The promoter of both alleles contains the effector binding element (EBEPthA4 ), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%-64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2-5, S2-6, S2-12 and S5-13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2-6 and S5-13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9-mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker-resistant citrus cultivars.


Assuntos
Sistemas CRISPR-Cas , Citrus/genética , Citrus/microbiologia , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Heterozigoto , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
7.
J Insect Sci ; 162016.
Artigo em Inglês | MEDLINE | ID: mdl-26839318

RESUMO

Large numbers of the small brown planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) occur in temperate regions, causing severe losses in rice, wheat, and other economically important crops. The planthoppers enter diapause in the third- or fourth-instar nymph stage, induced by short photoperiods and low temperatures. To investigate the geographic variation in L. striatellus diapause, we compared the incidence of nymphal diapause under various constant temperature (20 and 27 °C) and a photoperiod of 4:20, 8:16, 10:14, 12:12, 14:10, and 16:8 (L:D) h regimes among three populations collected from Hanoi (21.02° N, 105.85° E, northern Vietnam), Jiangyan (32.51° N, 120.15° E, eastern China), and Changchun (43.89° N, 125.32° E, north-eastern China). Our results indicated that there were significant geographic variations in the diapause of L. striatellus. When the original latitude of the populations increased, higher diapause incidence and longer critical photoperiod (CP) were exhibited. The CPs of the Jiangyan and Changchun populations were ∼ 12 hr 30 min and 13 hr at 20 °C, and 11 hr and 11 hr 20 min at 27 °C, respectively. The second- and third-instar nymphs were at the stage most sensitive to the photoperiod. However, when the fourth- and fifth-instar nymphs were transferred to a long photoperiod, the diapause-inducing effect of the short photoperiod on young instars was almost reversed. The considerable geographic variations in the nymphal diapause of L. striatellus reflect their adaptation in response to a variable environment and provide insights to develop effective pest management strategies.


Assuntos
Diapausa de Inseto/fisiologia , Hemípteros/fisiologia , Fotoperíodo , Animais , China , Feminino , Masculino , Ninfa/fisiologia , Temperatura , Vietnã
8.
Front Plant Sci ; 15: 1472155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39439518

RESUMO

Huanglongbing (HLB) and citrus canker, arising from Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. Citri (Xcc), respectively, have been imposing tremendous losses to the global citrus industry. Systemic acquired resistance (SAR) has been shown to be crucial for priming defense against pathogen in citrus. Salicylic acid (SA) binding protein 2 (SABP2), which is responsible for converting methyl salicylate (MeSA) to SA, is essential for full SAR establishment. Here, we characterized the functions of four citrus SABP2 genes (CsSABP2-1, CsSABP2-1V18A , CsSABP2-2 and CsSABP2-3) against HLB and citrus canker. In vitro enzymatic assay revealed that all four proteins had MeSA esterase activities, and CsSABP2-1 and CsSABP2-1V18A has the strongest activity. Their activities were inhibited by SA except for CsSABP2-1V18A. Four genes controlled by a strong promoter 35S were induced into Wanjincheng orange (Citrus sinensis Osbeck) to generate transgenic plants overexpressing CsSABP2. Overexpressing CsSABP2 increased SA and MeSA content and CsSABP2-1V18A had the strongest action on SA. Resistance evaluation demonstrated that only CsSABP2-1V18A had significantly enhanced tolerance to HLB, although all four CsSABP2s had increased tolerance to citrus canker. The data suggested the amino acid Val-18 in the active site of CsSABP2 plays a key role in protein function. Our study emphasized that balancing the levels of SA and MeSA is crucial for regulating SAR and conferring broad-spectrum resistance to HLB and citrus canker. This finding offers valuable insights for enhancing resistance through SAR engineering.

9.
Plant Cell Rep ; 32(10): 1601-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771575

RESUMO

KEY MESSAGE: A highly efficient Cre-mediated deletion system, offering a good alternative for producing marker-free transgenic plants that will relieve public concerns regarding GMOs, was first developed in citrus. The presence of marker genes in genetically modified crops raises public concerns regarding their safety. The removal of marker genes can prevent the risk of their flow into the environment and hasten the public's acceptance of transgenic products. In this study, a new construct based on the Cre/loxP site-recombination system was designed to delete marker genes from transgenic citrus. In the construct, the selectable marker gene isopentenyltransferase gene (ipt) from Agrobacterium tumefaciens and the Cre recombinase gene were flanked by two loxP recognition sites in the direct orientation. The green fluorescent protein (gfp) reporter gene for monitoring the transformation of foreign genes was located outside of the loxP sequences. Transformation and deletion efficiencies of the vector were investigated using nopaline synthase gene (NosP) and CaMV 35S promoters to drive expression of Cre. Analysis of GFP activity showed that 28.1 and 13.6 % transformation efficiencies could be obtained by NosP- and CaMV 35S-driven deletions, respectively. Molecular analysis demonstrated that 100 % deletion efficiency was observed in the transgenic plants. The complete excision of the marker gene was found in all deletion events driven by NosP and in 81.8 % of deletion events driven by CaMV 35S. The results showed that Cre/loxP-mediated excision was highly efficient and precise in citrus. This approach provides a reliable strategy for auto-deletion of selectable marker genes from transgenic citrus to produce marker-free transgenic plants.


Assuntos
Alquil e Aril Transferases , Citrus/genética , Integrases , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/enzimologia , Alquil e Aril Transferases/genética , Sequência de Bases , DNA Bacteriano/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Recombinação Genética , Transformação Genética
10.
Heliyon ; 9(4): e15430, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37101617

RESUMO

Objectives: This study's purpose was to assess the attitudes and willingness of middle school students to perform cardiopulmonary resuscitation (CPR) and to use automated external defibrillator (AED) in emergencies, and to evaluate the overall effects of first aid training. Results: Middle school students demonstrated a high willingness to learn CPR (95.87%) and AED (77.90%). However, the rate of CPR (9.87%) and AED (3.51%) training was relatively low. These trainings could improve their confidence while facing emergencies. Their main concerns were "Lack of first aid knowledge", "Lack of confidence in rescue skills" and "Fear of hurting the patient". Conclusions: Chinese middle school students are willing to learn CPR and AED skills, but relative trainings are insufficient and should be reinforced.

11.
Mol Hortic ; 3(1): 14, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37789492

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.

12.
Hortic Res ; 10(9): uhad159, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719271

RESUMO

The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.

13.
Hortic Res ; 8(1): 50, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642585

RESUMO

Pathological hypertrophy (cell enlargement) plays an important role in the development of citrus canker, but its regulators are largely unknown. Although WRKY22 is known to be involved in pathogen-triggered immunity and positively regulates resistance to bacterial pathogens in Arabidopsis, rice and pepper, the CRISPR/Cas9-mediated partial knockout of CsWRKY22 improves resistance to Xanthomonas citri subsp. citri (Xcc) in Wanjincheng orange (Citrus sinensis Osbeck). Here, we demonstrate that CsWRKY22 is a nucleus-localized transcriptional activator. CsWRKY22-overexpressing plants exhibited dwarf phenotypes that had wrinkled and thickened leaves and were more sensitive to Xcc, whereas CsWRKY22-silenced plants showed no visible phenotype changes and were more resistant to Xcc. Microscopic observations revealed that the overexpression of CsWRKY22 increased cell size in the spongy mesophyll. Transcriptome analysis showed that cell growth-related pathways, such as the auxin and brassinosteroid hormonal signaling and cell wall organization and biogenesis pathways, were significantly upregulated upon CsWRKY22 overexpression. Interestingly, CsWRKY22 activated the expression of CsLOB1, which is a key gene regulating susceptibility to citrus canker. We further confirmed that CsWRKY22 bound directly to the W-boxes just upstream of the transcription start site of CsLOB1 in vivo and in vitro. We conclude that CsWRKY22 enhances susceptibility to citrus canker by promoting host hypertrophy and CsLOB1 expression. Thus, our study provides new insights into the mechanism regulating pathological hypertrophy and the function of WRKY22 in citrus.

14.
Hortic Res ; 7: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257228

RESUMO

Citrus bacterial canker (CBC) is a disease resulting from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production worldwide. Wall-associated receptor-like kinases (WAKLs) are proteins with a central role in resisting a range of fungal and bacterial diseases. The roles of WAKLs in the context of CBC resistance, however, remain unclear. Here, we explored the role of CsWAKL08, which confers resistance to CBC, and we additionally analyzed the molecular mechanisms of CsWAKL08-mediated CBC resistance. Based on systematic annotation and induced expression analysis of the CsWAKL family in Citrus sinensis, CsWAKL08 was identified as a candidate that can be upregulated by Xcc infection in the CBC-resistant variety. CsWAKL08 can also be induced by the phytohormones salicylic acid (SA) and methyl jasmonic acid (MeJA) and spans the plasma membrane. Overexpression of CsWAKL08 resulted in strong CBC resistance in transgenic sweet oranges, whereas silencing of CsWAKL08 resulted in susceptibility to CBC. The peroxidase (POD) and superoxide dismutase (SOD) activities were significantly enhanced in the CsWAKL08-overexpressing plants compared to the control plants, thereby mediating reactive oxygen species (ROS) homeostasis in the transgenic plants. Moreover, the JA levels and the expression of JA biosynthesis and JA responsive genes were substantially elevated in the CsWAKL08 overexpression plants relative to the controls upon Xcc infection. Based on these findings, we conclude that the wall-associated receptor-like kinase CsWAKL08 positively regulates CBC resistance through a mechanism involving ROS control and JA signaling. These results further highlight the importance of this kinase family in plant pathogen resistance.

15.
Hortic Res ; 7: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025315

RESUMO

Citrus is one of the most important commercial fruit crops worldwide. With the vast genomic data currently available for citrus fruit, genetic relationships, and molecular markers can be assessed for the development of molecular breeding and genomic selection strategies. In this study, to permit the ease of access to these data, a web-based database, the citrus genomic variation database (CitGVD, http://citgvd.cric.cn/home) was developed as the first citrus-specific comprehensive database dedicated to genome-wide variations including single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs). The current version (V1.0.0) of CitGVD is an open-access resource centered on 1,493,258,964 high-quality genomic variations and 84 phenotypes of 346 organisms curated from in-house projects and public resources. CitGVD integrates closely related information on genomic variation annotations, related gene annotations, and details regarding the organisms, incorporating a variety of built-in tools for data accession and analysis. As an example, CitGWAS can be used for genome-wide association studies (GWASs) with SNPs and phenotypic data, while CitEVOL can be used for genetic structure analysis. These features make CitGVD a comprehensive web portal and bioinformatics platform for citrus-related studies. It also provides a model for analyzing genome-wide variations for a wide range of crop varieties.

16.
Gene ; 707: 178-188, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30991097

RESUMO

Genetic engineering approaches offer an alternative method to the citrus canker resistance breeding. The ethylene response factor (ERF) family is a member of families of transcription factors that are particular to plants and contribute significantly to biotic stress response and to plant growth. CsAP2-09 belongs to the citrus AP2/ERF transcription factor family. Initially, we proved the induction of CsAP2-09 in wild-types by Xcc and some hormones involved in pathogen response. We successfully cloned the CsAP2-09 and proved that CsAP2-09 protein is targeted to the nucleus. The CsAP2-09 was functionally characterized with over-expression and RNAi silencing strategy. In the overexpression lines, the diseased lesions and disease index were significantly decreased while in RNAi lines of CsAP2-09 the diseased lesions and disease index were significantly enhanced. Thus, the over-expression conferred Xcc resistance to transgenic citrus while silencing of CsAP2-09 in sweet orange leads to Xcc susceptibility. When the transcriptomes of WT and overexpression transcriptomes were compared, they revealed that some genes involved in phenylpropanoid biosynthesis, pathogen responses, transcript regulation etc. were modified. Our results provide a possibility for improving citrus canker disease resistance by over-expression of CsAP2s. Furthermore, various functions of CsAP2-09 provide significant information about the role of AP2/ERFs in plant disease resistance and stress tolerance.


Assuntos
Citrus sinensis/microbiologia , Resistência à Doença , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/microbiologia , Fator de Transcrição AP-2/genética , Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Transdução de Sinais , Estresse Fisiológico , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA