Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Transl Med ; 20(1): 481, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273177

RESUMO

OBJECTIVE: To identify novel DNA methylation-regulated differentially expressed genes (MeDEGs) in RA by integrated analysis of DNA methylation and RNA-Seq data. METHODS: The transcription and DNA methylation profiles of 9 RA and 15 OA synovial tissue were generated by RNA-Seq and Illumina 850K DNA methylation BeadChip. Gene set enrichment analysis (GSEA) and Weighted gene co-expression network analysis (WGCNA) were used to analyze methylation-regulated expressed genes by R software. The differentially expressed genes (DEGs), differentially methylated probes (DMPs), differentially methylated genes (DMGs) were analyzed by DESeq and ChAMP R package. The functional correlation of MeDEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction (PPI) network of MeDEGs was constructed by STRING and Reactome FI Cytoscape Plugin. Correlation analysis between methylation level and mRNA expression was conducted with R software. RESULTS: A total of 17,736 genes, 25,578 methylated genes and 755,852 methylation probes were detected. A total of 16,421 methylation-regulated expressed genes were obtained. The GSEA showed that these genes are associated with activation of immune response, adaptive immune response, Inflammatory response in C5 (ontology gene sets). For KEGG analysis, these genes are associated with rheumatoid arthritis, NF-kappa B signaling pathway, T cell receptor signaling pathway. The WGCNA showed that the turquoise module exhibited the strongest correlation with RA (R = 0.78, P = 1.27 × 10- 05), 660 genes were screened in the turquoise module. A total of 707 MeDEGs were obtained. GO analysis showed that MeDEGs were enriched in signal transduction, cell adhesion for BP, enriched in plasma membrane, integral component of membrane for CC, and enriched in identical protein binding, calcium ion binding for MF. The KEGG pathway analysis showed that the MeDEGs were enriched in calcium signaling pathway, T cell receptor signaling pathway, NF-kappa B signaling pathway, Rheumatoid arthritis. The PPI network containing 706 nodes and 882 edges, and the enrichment p value < 1.0 × 10- 16. With Cytoscape, based on the range of more than 10 genes, a total of 8 modules were screened out. Spearman correlation analysis showed RGS1(cg10718027), RGS1(cg02586212), RGS1(cg10861751) were significantly correlated with RA. CONCLUSIONS: RGS1 can be used as novel methylated biomarkers for RA.


Assuntos
Artrite Reumatoide , Metilação de DNA , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Metilação de DNA/genética , Perfilação da Expressão Gênica , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq
2.
Int Immunopharmacol ; 131: 111860, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508093

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is a complex disease with a challenging diagnosis, especially in seronegative patients. The aim of this study is to investigate whether the methylation sites associated with the overall immune response in RA can assist in clinical diagnosis, using targeted methylation sequencing technology on peripheral venous blood samples. METHODS: The study enrolled 241 RA patients, 30 osteoarthritis patients (OA), and 30 healthy volunteers control (HC). Fifty significant cytosine guanine (CG) sites between undifferentiated arthritis and RA were selected and analyzed using targeted DNA methylation sequencing. Logistic regression models were used to establish diagnostic models for different clinical features of RA, and six machine learning methods (logit model, random forest, support vector machine, adaboost, naive bayes, and learning vector quantization) were used to construct clinical diagnostic models for different subtypes of RA. Least absolute shrinkage and selection operator regression and detrended correspondence analysis were utilized to screen for important CGs. Spearman correlation was used to calculate the correlation coefficient. RESULTS: The study identified 16 important CG sites, including tumor necrosis factort receptor associated factor 5 (TRAF5) (chr1:211500151), mothers against decapentaplegic homolog 3 (SMAD3) (chr15:67357339), tumor endothelial marker 1 (CD248) (chr11:66083766), lysosomal trafficking regulator (LYST) (chr1:235998714), PR domain zinc finger protein 16 (PRDM16) (chr1:3307069), A-kinase anchoring protein 10 (AKAP10) (chr17:19850460), G protein subunit gamma 7 (GNG7) (chr19:2546620), yes1 associated transcriptional regulator (YAP1) (chr11:101980632), PRDM16 (chr1:3163969), histone deacetylase complex subunit sin3a (SIN3A) (chr15:75747445), prenylated rab acceptor protein 2 (ARL6IP5) (chr3:69134502), mitogen-activated protein kinase kinase kinase 4 (MAP3K4) (chr6:161412392), wnt family member 7A (WNT7A) (chr3:13895991), inhibin subunit beta B (INHBB) (chr2:121107018), deoxyribonucleic acid replication helicase/nuclease 2 (DNA2) (chr10:70231628) and chromosome 14 open reading frame 180 (C14orf180) (chr14:105055171). Seven CG sites showed abnormal changes between the three groups (P < 0.05), and 16 CG sites were significantly correlated with common clinical indicators (P < 0.05). Diagnostic models constructed using different CG sites had an area under the receiver operating characteristic curve (AUC) range of 0.64-0.78 for high-level clinical indicators of high clinical value, with specificity ranging from 0.42 to 0.77 and sensitivity ranging from 0.57 to 0.88. The AUC range for low-level clinical indicators of high clinical value was 0.63-0.72, with specificity ranging from 0.48 to 0.74 and sensitivity ranging from 0.72 to 0.88. Diagnostic models constructed using different CG sites showed good overall diagnostic accuracy for the four subtypes of RA, with an accuracy range of 0.61-0.96, a balanced accuracy range of 0.46-0.94, and an AUC range of 0.46-0.94. CONCLUSIONS: This study identified potential clinical diagnostic biomarkers for RA and provided novel insights into the diagnosis and subtyping of RA. The use of targeted deoxyribonucleic acid (DNA) methylation sequencing and machine learning methods for establishing diagnostic models for different clinical features and subtypes of RA is innovative and can improve the accuracy and efficiency of RA diagnosis.


Assuntos
Artrite Reumatoide , Neoplasias , Osteoartrite , Feminino , Humanos , Metilação de DNA , Teorema de Bayes , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Osteoartrite/diagnóstico , Osteoartrite/genética , Biomarcadores , DNA , Neoplasias/genética , Antígenos de Neoplasias , Antígenos CD
3.
Immun Inflamm Dis ; 11(6): e902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382265

RESUMO

OBJECTIVES: To assess the differences in circulating DNA methylation levels of CXCR5 between rheumatoid arthritis (RA) and osteoarthritis (OA) and healthy controls (HC), and the correlation of methylation changes with clinical characteristics of RA patients. METHODS: Peripheral blood samples were collected from 239 RA patients, 30 patients with OA, and 29 HC. Target region methylation sequencing to the promoter region of CXCR5 was achieved using MethylTarget. The methylation level of cg04537602 and methylation haplotype were compared among the three groups, and the correlation between methylation levels and clinical characteristics of RA patients was performed by Spearman's rank correlation analysis. RESULTS: The methylation level of cg04537602 was significantly higher in the peripheral blood of RA patients compared with OA patients (p = 1.3 × 10-3 ) and in the HC group (p = 5.5 × 10- 4 ). The sensitivity was enhanced when CXCR5 methylation level combined with rheumatoid factor and anti-cyclic citrullinated peptide with area under curve (AUC) of 0.982 (95% confidence interval 0.970-0.995). The methylation level of cg04537602 in RA was positively correlated with C-reactive protein (CRP) (r = .16, p = .01), and in RA patients aged 60 years and above, cg04537602 methylation levels were positively correlated with CRP (r = .31, p = 4.7 × 10- 4 ), tender joint count (r = .21, p = .02), visual analog scales score (r = .21, p = .02), Disease Activity Score in 28 joints (DAS28) using the CRP level DAS28-CRP (r = .27, p = 2.1 × 10- 3 ), and DAS28-ESR (r = .22, p = .01). We also observed significant differences of DNA methylation haplotypes in RA patients compared with OA patients and HC, which was consistent with single-loci-based CpG methylation measurement. CONCLUSION: The methylation level of CXCR5 was significantly higher in RA patients than in OA and HC, and correlated with the level of inflammation in RA patients, our study establishes a link between CXCR5 DNA methylation and clinical features that may help in the diagnosis and disease management of RA patients.


Assuntos
Artrite Reumatoide , Metilação de DNA , Humanos , Inflamação , Artrite Reumatoide/genética , Área Sob a Curva , Autoanticorpos , Receptores CXCR5/genética
4.
Front Mol Biosci ; 10: 1202371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046810

RESUMO

Objective: To investigate the potential association between Anoikis-related genes, which are responsible for preventing abnormal cellular proliferation, and rheumatoid arthritis (RA). Methods: Datasets GSE89408, GSE198520, and GSE97165 were obtained from the GEO with 282 RA patients and 28 healthy controls. We performed differential analysis of all genes and HLA genes. We performed a protein-protein interaction network analysis and identified hub genes based on STRING and cytoscape. Consistent clustering was performed with subgrouping of the disease. SsGSEA were used to calculate immune cell infiltration. Spearman's correlation analysis was employed to identify correlations. Enrichment scores of the GO and KEGG were calculated with the ssGSEA algorithm. The WGCNA and the DGIdb database were used to mine hub genes' interactions with drugs. Results: There were 26 differentially expressed Anoikis-related genes (FDR = 0.05, log2FC = 1) and HLA genes exhibited differential expression (P < 0.05) between the disease and control groups. Protein-protein interaction was observed among differentially expressed genes, and the correlation between PIM2 and RAC2 was found to be the highest; There were significant differences in the degree of immune cell infiltration between most of the immune cell types in the disease group and normal controls (P < 0.05). Anoikis-related genes were highly correlated with HLA genes. Based on the expression of Anoikis-related genes, RA patients were divided into two disease subtypes (cluster1 and cluster2). There were 59 differentially expressed Anoikis-related genes found, which exhibited significant differences in functional enrichment, immune cell infiltration degree, and HLA gene expression (P < 0.05). Cluster2 had significantly higher levels in all aspects than cluster1 did. The co-expression network analysis showed that cluster1 had 51 hub differentially expressed genes and cluster2 had 72 hub differentially expressed genes. Among them, three hub genes of cluster1 were interconnected with 187 drugs, and five hub genes of cluster2 were interconnected with 57 drugs. Conclusion: Our study identified a link between Anoikis-related genes and RA, and two distinct subtypes of RA were determined based on Anoikis-related gene expression. Notably, cluster2 may represent a more severe state of RA.

5.
Front Pharmacol ; 14: 1282610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027004

RESUMO

Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.

6.
Front Pharmacol ; 14: 1306584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027031

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.

7.
Front Immunol ; 13: 888306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464445

RESUMO

Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1ß) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.


Assuntos
Artrite Gotosa , Gota , Artrite Gotosa/metabolismo , Gota/metabolismo , Humanos , Inflamassomos/metabolismo , Macrófagos , Piroptose
8.
Front Immunol ; 13: 865267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418971

RESUMO

Rheumatoid arthritis (RA), one of the most common immune system diseases, mainly affects middle-aged and elderly individuals and has a serious impact on the quality of life of patients. Pain and disability caused by RA are significant symptoms negatively affecting patients, and they are especially seen when inappropriate treatment is administered. Effective therapeutic strategies have evolved over the past few decades, with many new disease-modifying antirheumatic drugs (DMARDs) being used in the clinic. Owing to the breakthrough in the treatment of RA, the symptoms of patients who could not be treated effectively in the past few years have been relieved. However, some patients complain about symptoms that have not been reported, implying that there are still some limitations in the RA treatment and evaluation system. In recent years, biomarkers, an effective means of diagnosing and evaluating the condition of patients with RA, have gradually been used in clinical practice to evaluate the therapeutic effect of RA, which is constantly being improved for accurate application of treatment in patients with RA. In this article, we summarize a series of biomarkers that may be helpful in evaluating the therapeutic effect and improving the efficiency of clinical treatment for RA. These efforts may also encourage researchers to devote more time and resources to the study and application of biomarkers, resulting in a new evaluation system that will reduce the inappropriate use of DMARDs, as well as patients' physical pain and financial burden.


Assuntos
Antirreumáticos , Artrite Reumatoide , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Idoso , Antirreumáticos/efeitos adversos , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Biomarcadores , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Dor/induzido quimicamente , Qualidade de Vida
9.
Front Immunol ; 13: 907733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874704

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.


Assuntos
Artrite Reumatoide , Artrite Reumatoide/tratamento farmacológico , Humanos , Inflamação , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/fisiologia , Receptores Purinérgicos P1
10.
Front Immunol ; 13: 961708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032122

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease accompanied by metabolic alterations. The metabolic profiles of patients with RA can be determined using targeted and non-targeted metabolomics technology. Metabolic changes in glucose, lipid, and amino acid levels are involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, the arachidonic acid metabolic pathway, and amino acid metabolism. These alterations in metabolic pathways and metabolites can fulfill bio-energetic requirements, promote cell proliferation, drive inflammatory mediator secretion, mediate leukocyte infiltration, induce joint destruction and muscle atrophy, and regulate cell proliferation, which may reflect the etiologies of RA. Differential metabolites can be used as biomarkers for the diagnosis, prognosis, and risk prediction, improving the specificity and accuracy of diagnostics and prognosis prediction. Additionally, metabolic changes associated with therapeutic responses can improve the understanding of drug mechanism. Metabolic homeostasis and regulation are new therapeutic strategies for RA. In this review, we provide a comprehensive overview of advances in metabolomics for RA.


Assuntos
Artrite Reumatoide , Metabolômica , Aminoácidos , Biomarcadores , Humanos , Metaboloma
11.
Front Immunol ; 13: 903475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795672

RESUMO

Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/ß-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/metabolismo , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Piroptose , Sinoviócitos/metabolismo
12.
Front Immunol ; 13: 838884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401568

RESUMO

MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.


Assuntos
Artrite Reumatoide , MicroRNAs , Sinoviócitos , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Biomarcadores/metabolismo , Epigênese Genética , Humanos , MicroRNAs/metabolismo , Sinoviócitos/metabolismo
13.
Front Immunol ; 13: 1054451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561742

RESUMO

Objectives: HTR2A is previously identified as a susceptibility gene for rheumatoid arthritis (RA). In this study, we performed the association analysis between DNA methylation of HTR2A with RA within peripheral blood samples. Methods: We enrolled peripheral blood samples from 235 patients with RA, 30 osteoarthritis (OA) patients, and 30 healthy controls. The DNA methylation levels of about 218 bp from chr13: 46898190 to chr13: 46897973 (GRCh38/hg38) around HTR2A cg15692052 from patients were analyzed by targeted methylation sequencing. Results: We measured methylation status for 7 CpGs in the promoter region of HTR2A and obseved overall methylation status are signficantly increased in RA compared with normal inviduals (FDR= 9.05 x 10-5). The average cg15692052 methylation levels (methylation score) showed a positive correlation with CRP (r=0.15, P=0.023). Compared with the OA group or HC group, the proportion of haplotypes CCCCCCC (FDR=0.02 and 2.81 x 10-6) is signficantly increased while TTTTTCC (FDR =0.01) and TTTTTTT(FDR =6.92 x 10-3) are significantly decreased in RA. We find methylation haplotypes combining with RF and CCP could signficantly enhance the performance of the diagnosing RA and its comorbidities (hypertension, interstitial lung disease, and osteoporosis), especially in interstitial lung disease. Conclusions: In our study, we found signficant hypermethylation of promoter region of HTR2A which indicates the potential clinical diagnostic role in rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Receptor 5-HT1A de Serotonina , Humanos , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Metilação de DNA , Doenças Pulmonares Intersticiais/genética , Osteoartrite/genética , Receptor 5-HT1A de Serotonina/sangue , Receptor 5-HT1A de Serotonina/genética
14.
Front Immunol ; 13: 1087279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703984

RESUMO

Introduction: Homeodomain-interacting protein kinase 3 (HIPK3) plays an important role in cell proliferation, apoptosis, and inflammation. Over-expression of HIPK3 in immune cells in rheumatoid arthritis (RA) has been reported. In this study, we investigated blood methylation levels and clinical characteristics of RA in a Chinese population. Methods: A total of 235 patients with RA, 30 with osteoarthritis (OA), and 30 matched healthy controls were recruited. The methylation status of seven CpGs in the differentially methylated region of HIPK3 (cg05501357) was measured using targeted methylation-sequencing technology. The association between methylation haplotypes and the overall methylation status of HIPK3 with clinical characteristics was assessed using generalized linear regression. Results: All seven CpGs showed hypomethylation status in RA blood compared with OA and normal individuals (overall p= 1.143×10-8 and FDR= 2.799×10-7), which is consistent with the previously reported high expression of HIPK3 in RA immune cells. Among all seven CpGs, 33286785 showed the highest predictive power with an area under the curve (AUC) of 0.829; we received a higher AUC=0.864 when we combined HIPK3 with anti-citrullinated protein antibodies (ACPA -) and rheumatoid factor (RF +) in the prediction model, indicating that when a patient's ACPA is negative, HIPK3 can assist RF as a new clinical index for the diagnosis of RA. We also found that HIPK3 methylation levels were negatively correlated with C-reactive protein (CRP; r= -0.16, p= 0.01). Methylation haplotypes were analyzed, and the full methylation haplotype (FMH; r= 0.16, p= 0.01) and full non-methylation haplotype (FNH; r= 0.18, p= 0.0061) were negatively correlated with CRP. Conclusion: Circulating blood methylation levels in the protein region of HIPK3 can be utilized as a supportive diagnostic biomarker and CRP level indicator for RA.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Metilação de DNA , População do Leste Asiático , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Fator Reumatoide , Inflamação/genética , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Front Immunol ; 12: 605616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664742

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease. Fibroblast-like synoviocytes (FLS) serve a major role in synovial hyperplasia and inflammation in RA. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative, shows promising therapeutic effects for RA and is now in phase II clinical trials in China. However, the underlying mechanism of LLDT-8 is still not fully understood. Here, we found that LLDT-8 inhibited proliferation and invasion of RA FLS, as well as the production of cytokines. Microarray data demonstrated that LLDT-8 upregulated the expression of long non-coding RNA (lncRNA) WAKMAR2, which was negatively associated with proliferation and invasion of RA FLS, as well as the production of pro-inflammatory cytokines. Knockdown of WAKMAR2 abolished the inhibitory effects of LLDT-8 on RA FLS. Mechanistically, WAKMAR2 sponged miR-4478, which targeted E2F1 and downstreamed p53 signaling. Rescue experiments indicated that the inhibitory effects of LLDT-8 on RA FLS were dependent on WAKMAR2/miR-4478/E2F1/p53 axis.


Assuntos
Artrite Reumatoide/etiologia , Diterpenos/farmacologia , Fator de Transcrição E2F1/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Proliferação de Células/efeitos dos fármacos , Suscetibilidade a Doenças , Diterpenos/uso terapêutico , Fator de Transcrição E2F1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA