Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7975): 756-761, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468634

RESUMO

Van der Waals assembly enables the design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moiré superlattices1-9. This twistronics approach has resulted in numerous previously undescribed physics, including strong correlations and superconductivity in twisted bilayer graphene10-12, resonant excitons, charge ordering and Wigner crystallization in transition-metal chalcogenide moiré structures13-18 and Hofstadter's butterfly spectra and Brown-Zak quantum oscillations in graphene superlattices19-22. Moreover, twistronics has been used to modify near-surface states at the interface between van der Waals crystals23,24. Here we show that electronic states in three-dimensional (3D) crystals such as graphite can be tuned by a superlattice potential occurring at the interface with another crystal-namely, crystallographically aligned hexagonal boron nitride. This alignment results in several Lifshitz transitions and Brown-Zak oscillations arising from near-surface states, whereas, in high magnetic fields, fractal states of Hofstadter's butterfly draw deep into the bulk of graphite. Our work shows a way in which 3D spectra can be controlled using the approach of 2D twistronics.

2.
Nature ; 584(7820): 210-214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788736

RESUMO

Of the two stable forms of graphite, hexagonal and rhombohedral, the former is more common and has been studied extensively. The latter is less stable, which has so far precluded its detailed investigation, despite many theoretical predictions about the abundance of exotic interaction-induced physics1-6. Advances in van der Waals heterostructure technology7 have now allowed us to make high-quality rhombohedral graphite films up to 50 graphene layers thick and study their transport properties. Here we show that the bulk electronic states in such rhombohedral graphite are gapped8 and, at low temperatures, electron transport is dominated by surface states. Because of their proposed topological nature, the surface states are of sufficiently high quality to observe the quantum Hall effect, whereby rhombohedral graphite exhibits phase transitions between a gapless semimetallic phase and a gapped quantum spin Hall phase with giant Berry curvature. We find that an energy gap can also be opened in the surface states by breaking their inversion symmetry by applying a perpendicular electric field. Moreover, in rhombohedral graphite thinner than four nanometres, a gap is present even without an external electric field. This spontaneous gap opening shows pronounced hysteresis and other signatures characteristic of electronic phase separation, which we attribute to emergence of strongly correlated electronic surface states.

3.
Nano Lett ; 24(27): 8378-8385, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38885205

RESUMO

Stacking orders provide a unique way to tune the properties of two-dimensional materials. Recently, ABCB-stacked tetralayer graphene has been predicted to possess atypical elemental ferroelectricity arising from its symmetry breaking but has been experimentally explored very little. Here, we observe pronounced nonlinear optical second-harmonic generation (SHG) in ABCB-stacked tetralayer graphene while absent in both ABAB- and ABCA-stacked allotropes. Our results provide direct evidence of symmetry breaking in ABCB-stacked tetralayer graphene. The remarkable contrast in the SHG spectra of tetralayer graphene allows straightforward identification of ABCB domains from the other two kinds of stacking order and facilitates the characterization of their crystalline orientation. The employed SHG technique serves as a convenient tool for exploring the intriguing physics and novel nonlinear optics in ABCB-stacked graphene, where spontaneous polarization and intrinsically gapped flat bands coexist. Our results establish ABCB-stacked graphene as a unique platform for studying the rare ferroelectricity in noncentrosymmetric elemental structures.

4.
Nano Lett ; 20(1): 449-455, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804092

RESUMO

In situ bending tests of amorphous Si nanowires (a-Si NWs) found different elastic behavior depending on whether they were straight or curved to begin with. The axially straight NWs exhibit pure elastic deformation; however, the axially curved NWs exhibit obvious anelastic behavior when they are bent in the direction of original curvature. On the basis of STEM-EELS analysis, we propose that the underlying mechanism for this anelastic behavior is a bond-switching assisted redistribution of the nonuniform density (structure) in the curved NWs under the inhomogeneous stress field. This mechanism was further supported by the fact that the originally straight a-Si NWs also display similar anelasticity with the as-grown curved NWs after focused ion beam irradiation that can cause nonuniform structure distribution. As compared to what has been reported in other 1D materials, the anelasticity of a-Si NWs can be tuned by modifying their morphology, controlling the loading direction, or irradiating them via ion beam. Our findings suggest that a-Si NWs could be a promising material in the nanoscale damping systems, especially the semiconductor nanodevices.

5.
Nano Lett ; 19(12): 8526-8532, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664847

RESUMO

In graphite crystals, layers of graphene reside in three equivalent, but distinct, stacking positions typically referred to as A, B, and C projections. The order in which the layers are stacked defines the electronic structure of the crystal, providing an exciting degree of freedom which can be exploited for designing graphitic materials with unusual properties including predicted high-temperature superconductivity and ferromagnetism. However, the lack of control of the stacking sequence limits most research to the stable ABA form of graphite. Here, we demonstrate a strategy to control the stacking order using van der Waals technology. To this end, we first visualize the distribution of stacking domains in graphite films and then perform directional encapsulation of ABC-rich graphite crystallites with hexagonal boron nitride (hBN). We found that hBN encapsulation, which is introduced parallel to the graphite zigzag edges, preserves ABC stacking, while encapsulation along the armchair edges transforms the stacking to ABA. The technique presented here should facilitate new research on the important properties of ABC graphite.

6.
Nano Lett ; 19(3): 1736-1742, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30720286

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) are recently emerged electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effect, and superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Here we reveal strong interaction effects in the conduction band of MoS2 by transport experiment. We study the massive Dirac electron Landau levels (LL) in high-quality MoS2 samples with field-effect mobilities of 24 000 cm2/(V·s) at 1.2 K. We identify the valley-resolved LLs and low-lying polarized LLs using the Lifshitz-Kosevitch formula. By further tracing the LL crossings in the Landau fan diagram, we unambiguously determine the density-dependent valley susceptibility and the interaction enhanced g-factor from 12.7 to 23.6. Near integer ratios of Zeeman-to-cyclotron energies, we discover LL anticrossings due to the formation of quantum Hall Ising ferromagnets, the valley polarizations of which appear to be reversible by tuning the density or an in-plane magnetic field. Our results provide evidence for many-body interaction effects in the conduction band of MoS2 and establish a fertile ground for exploring strongly correlated phenomena of massive Dirac electrons.

7.
Nanotechnology ; 29(3): 035204, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29155410

RESUMO

Atomically-thin black phosphorus (BP) field-effect transistors show strong-weak localization transition, which is tunable through gate voltages. Hopping transports through charge impurity-induced localized states are observed at low carrier density regime. Variable-range hopping model is applied to simulate scattering behaviors of charge carriers. In the high carrier concentration regime, a negative magnetoresistance indicates weak localization effects. The extracted phase coherence length is power-law temperature-dependent [Formula: see text] and demonstrates inelastic electron-electron interactions and the 2D transport features in few-layer BP field-effect devices. The competition between localization and phase coherence lengths is investigated and analyzed based on observed gate-tunable strong-weak localization transition in few-layer BP.

8.
Phys Rev Lett ; 118(6): 067702, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234544

RESUMO

We fabricate high-mobility p-type few-layer WSe_{2} field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe_{2}, in which itinerant or QH ferromagnetism likely occurs. Evidently, the Γ valley of few-layer WSe_{2} offers a unique platform with unusually heavy hole carriers and a substantially enhanced g factor for exploring strongly correlated phenomena.

9.
Nano Lett ; 16(12): 7768-7773, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960491

RESUMO

We demonstrate that a field-effect transistor (FET) made of few-layer black phosphorus (BP) encapsulated in hexagonal boron nitride (h-BN) in vacuum exhibits a room-temperature hole mobility of 5200 cm2/(Vs), being limited just by the phonon scattering. At cryogenic temperatures, the FET mobility increases up to 45 000 cm2/(Vs), which is five times higher compared to the mobility obtained in earlier reports. The unprecedentedly clean h-BN-BP-h-BN heterostructure exhibits Shubnikov-de Haas oscillations and a quantum Hall effect with Landau level (LL) filling factors down to v = 2 in conventional laboratory magnetic fields. Moreover, carrier density independent effective mass of m* = 0.26 m0 is measured, and a Landé g-factor of g = 2.47 is reported. Furthermore, an indication for a distinct hole transport behavior with up- and down-spin orientations is found.

10.
Nano Lett ; 15(4): 2645-51, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25807151

RESUMO

Two-dimensional (2D) atomic-layered heterostructures stacked by van der Waals interactions recently introduced new research fields, which revealed novel phenomena and provided promising applications for electronic, optical, and optoelectronic devices. In this study, we report the van der Waals epitaxial growth of high-quality atomically thin Bi2Se3 on single crystalline hexagonal boron nitride (h-BN) by chemical vapor deposition. Although the in-plane lattice mismatch between Bi2Se3 and h-BN is approximately 65%, our transmission electron microscopy analysis revealed that Bi2Se3 single crystals epitaxially grew on h-BN with two commensurate states; that is, the (1̅21̅0) plane of Bi2Se3 was preferably parallel to the (1̅100) or (1̅21̅0) plane of h-BN. In the case of the Bi2Se3 (2̅110) ∥ h-BN (11̅00) state, the Moiré pattern wavelength in the Bi2Se3/h-BN superlattice can reach 5.47 nm. These naturally formed thin crystals facilitated the direct assembly of h-BN/Bi2Se3/h-BN sandwiched heterostructures without introducing any impurity at the interfaces for electronic property characterization. Our quantum capacitance (QC) measurements showed a compelling phenomenon of thickness-dependent topological phase transition, which was attributed to the coupling effects of two surface states from Dirac Fermions at/or above six quintuple layers (QLs) to gapped Dirac Fermions below six QLs. Moreover, in ultrathin Bi2Se3 (e.g., 3 QLs), we observed the midgap states induced by intrinsic defects at cryogenic temperatures. Our results demonstrated that QC measurements based on h-BN/Bi2Se3/h-BN sandwiched structures provided rich information regarding the density of states of Bi2Se3, such as quantum well states and Landau quantization. Our approach in fabricating h-BN/Bi2Se3/h-BN sandwiched device structures through the combination of bottom-up growth and top-down dry transferring techniques can be extended to other two-dimensional layered heterostructures.

11.
Nat Commun ; 15(1): 2597, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519502

RESUMO

Flat-band systems with strongly correlated electrons can exhibit a variety of phenomena, such as correlated insulating and topological states, unconventional superconductivity, and ferromagnetism. Rhombohedral multilayer graphene has recently emerged as a promising platform for investigating exotic quantum states due to its hosting of topologically protected surface flat bands at low energy, which have a layer-dependent energy dispersion. However, the complex relationship between the surface flat bands and the highly dispersive high-energy bands makes it difficult to study correlated surface states. In this study, we introduce moiré superlattices as a method to isolate the surface flat bands of rhombohedral multilayer graphene. The observed pronounced screening effects in the moiré potential-modulated rhombohedral multilayer graphene indicate that the two surface states are electronically decoupled. The flat bands that are isolated promote correlated surface states in areas that are distant from the charge neutrality points. Notably, we observe tunable layer-polarized ferromagnetism, which is evidenced by a hysteretic anomalous Hall effect. This is achieved by polarizing the surface states with finite displacement fields.

12.
Small ; 9(18): 3031-6, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23520196

RESUMO

Efficient charge transfer between ZnO quantum dots (QDs) and graphene is demonstrated by decorating ZnO QDs on top of graphene, with the assistance of oxygen molecules from the air. The electrical response of the device to UV light is greatly enhanced, and a photoconductive gain of up to 10(7) can be obtained.


Assuntos
Grafite/química , Oxigênio/química , Pontos Quânticos/química , Óxido de Zinco/química
13.
Opt Express ; 21(5): 5891-6, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482157

RESUMO

We report a remarkable improvement of photoluminescence from ZnO-core/a-SiN(x):H-shell nanorod arrays by modulating the bandgap of a-SiN(x):H shell. The a-SiN(x):H shell with a large bandgap can significantly enhance UV emission by more than 8 times compared with the uncoated ZnO nanorods. Moreover, it is found that the deep-level defect emission can be almost completely suppressed for all the core-shell nanostructures, which is independent of the bandgaps of a-SiN(x):H shells. Combining with the analysis of infrared absorption spectrum and luminescence characteristics of NH(x)-plasma treated ZnO nanorods, the improved photoluminescence is attributed to the decrease of nonradiative recombination probability and the reduction of surface band bending of ZnO cores due to the H and N passivation and the screening effect from the a-SiN(x):H shells. Our findings open up new possibilities for fabricating stable and efficient UV-only emitting devices.

14.
Nano Lett ; 12(11): 5802-7, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23051708

RESUMO

We report the piezotronic effects on the photoluminescence (PL) properties of bent ZnO nanowires (NWs). We find that the piezoelectric field largely modifies the spatial distribution of the photoexcited carriers in a bent ZnO NW. This effect, together with strain-induced changes in the energy band structure due to the piezoresistive effects, results in a net redshift of free exciton PL emission from a bent ZnO NW. At the large-size limit, this net redshift depends only on the strain parameter, but it is size-dependent if the diameter of the NW is comparable to that of the depletion layer. The experimental data obtained using the near-field scanning optical microscopy technique at low temperatures support our theoretical model.

15.
Opt Lett ; 37(2): 211-3, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22854470

RESUMO

The a-SiNx:H with a large bandgap of 3.8 eV was utilized to decorate ZnO nanowires. The UV emission from the a-SiNx:H-decorated ZnO nanowires are greatly enhanced compared with the undecorated ZnO nanowire. The deep-level defect emission has been completely suppressed even though the sample was annealed at temperatures up to 400 °C. The incorporation of H and N is suggested to passivate the defect states at the nanowire surface and thus result in the flat-band effect near ZnO surface as well as reduction of the nonradiative recombination probability.

16.
Nat Commun ; 13(1): 1777, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365627

RESUMO

Electrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices for exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures. The performance enhancements of TMDSC field-effect transistors are well reflected by the low contact resistance (down to 90 Ωµm in MoS2, towards the quantum limit), the high field-effect mobility (up to 358,000 cm2V-1s-1 in WSe2), and the prominent transport characteristics at cryogenic temperatures. This method also offers possibilities of the local manipulation of atomic structures and electronic properties for TMDSC device design.

17.
Nat Nanotechnol ; 17(4): 390-395, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35210566

RESUMO

Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarization arranged into a twist-controlled network. The last can be moved by applying out-of-plane electrical fields, as visualized in situ using channelling contrast electron microscopy. The observed interfacial charge transfer, movement of domain walls and their bending rigidity agree well with theoretical calculations. Furthermore, we demonstrate proof-of-principle field-effect transistors, where the channel resistance exhibits a pronounced hysteresis governed by pinning of ferroelectric domain walls. Our results show a potential avenue towards room temperature electronic and optoelectronic semiconductor devices with built-in ferroelectric memory functions.

18.
Science ; 375(6579): 430-433, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084955

RESUMO

In thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy, whereas the filled bands underneath contribute little to conduction. Here, we describe a very different regime in which carrier distribution in graphene and its superlattices is shifted so far from equilibrium that the filled bands start playing an essential role, leading to a critical-current behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity. Key signatures of the out-of-equilibrium state are current-voltage characteristics that resemble those of superconductors, sharp peaks in differential resistance, sign reversal of the Hall effect, and a marked anomaly caused by the Schwinger-like production of hot electron-hole plasma. The observed behavior is expected to be common to all graphene-based superlattices.

19.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33277256

RESUMO

In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be markedly changed by a moiré pattern induced by twist angles between different layers. This process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here, we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures. Using this technique, we fabricated heterostructures where graphene is perfectly aligned with both top and bottom encapsulating layers of hexagonal boron nitride. Our technique enables twisted 2D material systems in one single stack with dynamically tunable optical, mechanical, and electronic properties.

20.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33115746

RESUMO

The competition between quality and productivity has been a major issue for large-scale applications of two-dimensional materials (2DMs). Until now, the top-down mechanical cleavage method has guaranteed pure perfect 2DMs, but it has been considered a poor option in terms of manufacturing. Here, we present a layer-engineered exfoliation technique for graphene that not only allows us to obtain large-size graphene, up to a millimeter size, but also allows selective thickness control. A thin metal film evaporated on graphite induces tensile stress such that spalling occurs, resulting in exfoliation of graphene, where the number of exfoliated layers is adjusted by using different metal films. Detailed spectroscopy and electron transport measurement analysis greatly support our proposed spalling mechanism and fine quality of exfoliated graphene. Our layer-engineered exfoliation technique can pave the way for the development of a manufacturing-scale process for graphene and other 2DMs in electronics and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA