Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Org Biomol Chem ; 22(8): 1634-1638, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323382

RESUMO

Alzheimer's disease (AD) is characterized by cognitive decline, often attributed to the deficiency of acetylcholine, which can undergo hydrolysis by acetylcholinesterase (AChE) within the biological milieu. Here, we report a supramolecular strategy that takes advantage of confinement effects to inhibit such a hydrolysis process, shedding some light on AD therapy. A water-soluble and bowl-shaped molecule, hexacarboxylated tribenzotriquinacene (TBTQ-C6), was employed to shield acetylcholine (G1) from enzymatic degradation through host-guest binding interactions. Our study revealed highly efficient host-guest interactions with a binding ratio of 1 : 3, resulting in a significant reduction in acetylcholine hydrolysis from 91.1% to 7.4% in the presence of AChE under otherwise identical conditions. Furthermore, TBTQ-C6 showed potential for attenuating the degradation of butyrylcholine (G2) by butyrylcholinesterase (BChE). The broader implications of this study extend to the potential use of molecular containers in various biochemical and pharmacological applications, opening new avenues for research in the field of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolina/metabolismo , Acetilcolina/uso terapêutico , Acetilcolinesterase/metabolismo , Hidrólise , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular
2.
J Nanobiotechnology ; 22(1): 339, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890734

RESUMO

Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-ß1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-ß1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/ß-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.


Assuntos
Nefropatias Diabéticas , Vesículas Extracelulares , Fibrose , Células-Tronco Mesenquimais , Análise de Célula Única , Transcriptoma , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Masculino , Camundongos Endogâmicos C57BL , Humanos , Macrófagos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Células Mesangiais/metabolismo , Rim/patologia , Rim/metabolismo
3.
Sci Rep ; 14(1): 7489, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553504

RESUMO

This study aims to evaluate the safety of Alprazolam by analyzing the FAERS database, provide data analysis for monitoring adverse drug reactions. This research encompasses adverse event (AE) reports related to Alprazolam from the first quarter of 2004 to the second quarter of 2023. Four signal mining and analysis methods were utilized, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM). Further exploration was conducted regarding patient characteristics and types of AEs. A total of 23,575 AE reports in which Alprazolam was the primary suspect drug were collected, identifying 347 Preferred Term (PT) signals and 27 System Organ Classes (SOCs). The number of AE reports increased annually, especially in 2015, 2018, 2019, and 2020. The main affected groups were females and the age range of 18 to 45. Psychiatric disorders, Nervous system disorders, and Gastrointestinal disorders were the most common the organ system in which the AEs occurred. There is a certain risk of drug abuse and suicide with Alprazolam. Most notably, several AEs not recorded in the Alprazolam leaflet appeared among the top 30 PTs in signal strength, including but not limited to Benzodiazepine drug level abnormal, Acquired amegakaryocytic thrombocytopenia, Cutaneous T-cell dyscrasia, and Coronary No-reflow Phenomenon. For the first time, AEs related to the cardiovascular system and platelet function were unveiled. The severe AE reports that resulted in "hospitalization" and "death" accounted for 30.96% and 21.86%. This study highlights the risks of suicide and misuse of Alprazolam. Other potential severe or fatal AEs, such as those related to the cardiovascular system, platelet function, and others, require further research to determine their precise mechanisms and risk factors.


Assuntos
Alprazolam , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Masculino , Alprazolam/efeitos adversos , Teorema de Bayes , Benzodiazepinas , Fatores de Risco , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Medição de Risco
4.
Theranostics ; 14(4): 1631-1646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389842

RESUMO

Diabetic retinopathy (DR), a complex complication of diabetes mellitus (DM), is a leading cause of adult blindness. Hyperglycemia triggers DR, resulting in microvascular damage, glial apoptosis, and neuronal degeneration. Inflammation and oxidative stress play crucial roles during this process. Current clinical treatments for DR primarily target the advanced retinal disorder but offer limited benefits with inevitable side effects. Extracellular vesicles (EVs) exhibit unique morphological features, contents, and biological properties and can be found in cell culture supernatants, various body fluids, and tissues. In DR, EVs with specific cargo composition would induce the reaction of receptor cell once internalized, mediating cellular communication and disease progression. Increasing evidence indicates that monitoring changes in EV quantity and content in DR can aid in disease diagnosis and prognosis. Furthermore, extensive research is investigating the potential of these nanoparticles as effective therapeutic agents in preclinical models of DR. This review explores the current understanding of the pathological effects of EVs in DR development, discusses their potential as biomarkers and therapeutic strategies, and paves the way for further research and therapeutic advancements.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Vesículas Extracelulares , Hiperglicemia , Humanos , Retinopatia Diabética/tratamento farmacológico , Inflamação/complicações , Retina/patologia , Hiperglicemia/complicações , Vesículas Extracelulares/fisiologia
5.
Int J Biol Sci ; 20(10): 4098-4113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113699

RESUMO

Pancreatic cancer is a very aggressive and fatal malignancy with few therapeutic choices and a poor prognosis. Understanding the molecular pathways that drive its growth is critical for developing effective therapeutic strategies. Exosomes, small extracellular vesicles secreted by numerous cell types, have recently emerged as essential intercellular communication mediators, with implications for tumor growth and metastasis. In this article, we present a review of current knowledge about exosomes and their role in pancreatic cancer progression We discuss the biogenesis and characteristics of exosomes, as well as their cargo and functional significance in tumor growth, immune evasion, angiogenesis, invasion, and metastasis. We further emphasize the potential of exosomes as diagnostic biomarkers and therapeutic targets for pancreatic cancer. Finally, we discuss the challenges and future perspectives in using exosomes to improve patient outcomes in pancreatic cancer.


Assuntos
Exossomos , Neoplasias Pancreáticas , Exossomos/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Progressão da Doença , Animais , Biomarcadores Tumorais/metabolismo
6.
NPJ Regen Med ; 9(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218925

RESUMO

Renal interstitial fibrosis (RIF) is a fundamental pathological feature of chronic kidney disease (CKD). However, toxicity and poor renal enrichment of fibrosis inhibitors limit their further applications. In this study, a platform for CKD therapy is developed using superparamagnetic iron oxide nanoparticles (SPION) decorated mesenchymal stem cells derived extracellular vesicles with carboxyl terminus of Hsc70-interacting protein (CHIP) high expression (SPION-EVs) to achieve higher renal-targeting antifibrotic therapeutic effect. SPION-EVs selectively accumulate at the injury renal sites under an external magnetic field. Moreover, SPION-EVs deliver CHIP to induce Smad2/3 degradation in renal tubular cells which alleviates Smad2/3 activation-mediated fibrosis-like changes and collagen deposition. The extracellular vesicle engineering technology provides a potential nanoplatform for RIF therapy through CHIP-mediated Smad2/3 degradation.

7.
Oncogene ; 43(14): 1033-1049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366146

RESUMO

Circular RNAs (circRNAs) play a crucial role in regulating various tumors. However, their biological functions and mechanisms in gastric cancer (GC) have not been well understood. Here, we discovered a stable cytoplasmic circRNA named circUSP1 (hsa_circ_000613) in GC. CircUSP1 upregulation in GC tissues was correlated with tumor size and differentiation. We observed that circUSP1 promoted GC growth and metastasis. Mechanistically, circUSP1 mainly interacted with the RRM1 domain of an RNA-binding protein (RBP) called HuR, stabilizing its protein level by inhibiting ß-TrCP-mediated ubiquitination degradation. The oncogenic properties of HuR mediated promotive effects of circUSP1 in GC progression. Moreover, we identified USP1 and Vimentin as downstream targets of HuR in post-transcriptional regulation, mediating the effects of circUSP1. The parent gene USP1 also enhanced the viability and mobility of GC cells. Additionally, tissue-derived circUSP1 could serve as an independent prognostic factor for GC, while plasma-derived circUSP1 showed promise as a diagnostic biomarker, outperforming conventional markers including serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA19-9). Our study highlights that circUSP1 promotes GC progression by binding to and stabilizing oncogenic HuR, thereby facilitating the upregulation of USP1 and Vimentin at the post-transcriptional level. These findings suggest that circUSP1 could be a potential therapeutic target and a diagnostic and prognostic biomarker for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Vimentina/genética , Vimentina/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
8.
Clin Chim Acta ; 554: 117773, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199579

RESUMO

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Sensitive and accurate biomarkers can greatly aid in early diagnosis and favorable prognosis. Neutrophils are the most abundant immune cells in human circulation and play a critical role in tumor progression. Neutrophil-derived exosomes (Neu-Exo) contain abundant bioactive molecules and are critically involved in disease progression. METHODS: We proposed a Dynabeads-based (CD66b antibody-coupled) separation and detection system for Neu-Exo analysis. Dual antibody-assisted fluorescent Dynabeads was established to detect Neu-Exo abundance. MiRNA signature of Neu-Exo was identified by RNA sequencing. QRT-PCR and droplet digital PCR (ddPCR) were used for candidate miRNA detection and the potential of Neu-Exo miRNAs in the diagnosis of gastric cancer was evaluated. RESULTS: Dual antibody-assisted fluorescent Dynabeads obtained a detection limit of 7.8 × 105 particles/mL of Neu-Exo and a recovery rate of 81 % under optimized conditions. ROC curve indicated that the abundance of CD66b+ Neu-Exo could well distinguish GC patients from healthy controls (HC) (AUC > 0.8). Additionally, miR-223-3p was found among the top differentially expressed miRNAs in Neu-Exo and presented superior diagnostic value in gastric cancer. Droplet digital PCR (ddPCR) significantly improved the diagnostic efficiency to differentiate GC patients from HC and benign gastric diseases (BGD) patients (AUC > 0.9). CONCLUSION: The Dynabeads-based separation and detection system, assisted with ddPCR analysis, provides a promising platform to enrich Neu-Exo and analyze miRNA profile for gastric cancer liquid biopsy.


Assuntos
Exossomos , MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neutrófilos/patologia , Biomarcadores Tumorais/genética , Reação em Cadeia da Polimerase , Exossomos/genética , Exossomos/patologia
10.
Transl Oncol ; 45: 101969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692196

RESUMO

BACKGROUND: Exosomes, one of small extracellular vesicles, play a vital role in cell to cell communication and contribute to the advancement of tumors through their cargo molecules. Exosomal circRNAs have emerged as significant players in various types of tumors. Thus, this study aimed to investigate how exosomal circRNAs are involved in the diagnosis and progression of gastric cancer (GC). METHODS: Serum exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis and Western blot. CCK-8, colony formation and transwell assays were conducted to study the function of hsa_circ_0050547 (named as circ50547). qRT-PCR was used to quantify the expression of circ50547 in GC tissues and serum exosomes. Fluorescence in situ hybridization was applied to detect the cellular distribution of circ50547. Stemness and drug-resistance were detected by sphere formation, WB, flow cytometry and half-maximal inhibitory concentration analyses. Bioinformatic analyses, luciferase experiments, qRT-PCR and WB were used to investigate molecular mechanisms. RESULTS: We discovered for the first time a new type of GC-derived exosomal circRNA, circ50547. We found that circ50547 is highly expressed in both GC tissues and serum exosomes. Interestingly, we observed that the diagnostic value of exosomal circ50547 is superior to that of serum circ50547. Circ50547 overexpression enhanced the proliferation, migration, invasion, stemness and drug resistance of GC cells, while knockdown of circ50547 showed the opposite effect. Mechanistically, circ50547 acted as a sponge for miR-217 to regulate the expression of HNF1B, which promoted gastric cancer progression. CONCLUSION: Exosomal circ50547 may be a promising marker for the diagnosis and prognosis prediction of GC. These findings suggest that it plays an oncogenic role through miR-217/HNF1B signaling pathway in GC.

11.
Sci Rep ; 14(1): 17703, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085289

RESUMO

Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-ß signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-ß signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.


Assuntos
Proteína ADAM17 , Vesículas Extracelulares , Fibrose , Rim , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/terapia , Nefropatias/patologia , Nefropatias/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos
12.
ACS Nano ; 18(6): 4871-4885, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290527

RESUMO

Diabetic wounds exhibit delayed and incomplete healing, usually due to vascular and nerve damage. Dysregulation of cellular Ca2+ homeostasis has recently been shown to be closely related to insulin resistance and type 2 diabetes mellitus. However, the involvement of this dysregulation in diabetic wound complications remains unknown. In this study, we found calcium dysregulation in patients with diabetic ulcers via tissue protein profiling. High glucose and glucometabolic toxicant stimulation considerably impaired the function of TRPC6, a pore subunit of transient receptor potential channels mediating Ca2+ influx, and mitochondria, which regulate calcium cycling and metabolism. Furthermore, we found that mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) could play a dual role in restoring the function of TRPC6 and mitochondria by delivering transcription factor SP2 and deubiquitinating enzyme USP9, respectively. MSC-sEVs could transfer SP2 that activated TRPC6 expression by binding to its specific promoter regions (-1519 to -1725 bp), thus recovering Ca2+ influx and downstream pathways. MSC-sEVs also promoted mitophagy to restore mitochondrial function by transporting USP9 that stabilized the expression of Parkin, a major player in mitophagy, thereby guaranteeing Ca2+ efflux and avoidance of Ca2+ overload. Targeting the regulation of calcium homeostasis provides a perspective for understanding diabetic wound healing, and the corresponding design of MSC-sEVs could be a potential therapeutic strategy.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Canal de Cátion TRPC6/metabolismo , Cálcio/metabolismo , Cicatrização/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo
13.
Bioact Mater ; 33: 444-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38076648

RESUMO

Diabetic retinopathy (DR) is a leading cause of blindness worldwide with limited treatment options. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold promise as a cell-free therapy for retinal diseases. In this study, we present evidence that the intravitreal injection of MSC-sEVs improved retinal function and alleviated retinal apoptosis, inflammation, and angiogenesis in both db/db mice and streptozotocin-induced diabetic rats. Mechanistically, hyperglycemia-induced activation of hypoxia-inducible factor-1α (HIF-1α) inhibited the tripartite motif 21 (TRIM21)-mediated ubiquitination and degradation of enhancer of zeste homologue 2 (EZH2), ultimately resulting in the downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through EZH2-induced methylation modification. The presence of miR-5068 and miR-10228 in MSC-sEVs targeted the HIF-1α/EZH2/PGC-1α pathway. The blockade of miR-5068 and miR-10228 abolished the retinal therapeutic effects of MSC-sEVs. Additionally, we engineered MSC-sEVs with elevated levels of miR-5068 and miR-10228 to enhance retinal repair efficiency. Together, our findings provide novel insights into the mechanism underlying DR progress and highlight the potential of MSC-sEVs, especially engineered MSC-sEVs, as a therapeutic option for DR.

14.
Cell Rep Med ; 5(5): 101510, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38614093

RESUMO

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.


Assuntos
Ácido Araquidônico , Transformação Celular Neoplásica , Montagem e Desmontagem da Cromatina , Classe I de Fosfatidilinositol 3-Quinases , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Ácido Araquidônico/metabolismo , Animais , Mutação/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina/genética , Camundongos , Linhagem Celular Tumoral , Colo/patologia , Colo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Exossomos/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Histonas/metabolismo , Histonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA