Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823639

RESUMO

Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.


Assuntos
Adenosina Desaminase , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gluconeogênese , Animais , Masculino , Camundongos , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
2.
Med Res Rev ; 44(4): 1727-1767, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38314926

RESUMO

Unprecedented therapeutic targeting of previously undruggable proteins has now been achieved by molecular-glue-mediated proximity-induced degradation. As a small GTPase, G1 to S phase transition 1 (GSPT1) interacts with eRF1, the translation termination factor, to facilitate the process of translation termination. Studied demonstrated that GSPT1 plays a vital role in the acute myeloid leukemia (AML) and MYC-driven lung cancer. Thus, molecular glue (MG) degraders targeting GSPT1 is a novel and promising approach for treating AML and MYC-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of GSPT1, highlighting the latest advances and challenges in MG degraders, as well as some representative patents. The structure-activity relationships, mechanism of action and pharmacokinetic features of MG degraders are emphasized to provide a comprehensive compendium on the rational design of GSPT1 MG degraders. We hope to provide an updated overview, and design guide for strategies targeting GSPT1 for the treatment of cancer.


Assuntos
Química Farmacêutica , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteólise , Relação Estrutura-Atividade
3.
J Biol Chem ; 299(10): 105219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660913

RESUMO

Rectal prolapse in serious inflammatory bowel disease is caused by abnormal reactions of the intestinal mucosal immune system. The circadian clock has been implicated in immune defense and inflammatory responses, but the mechanisms by which it regulates gut inflammation remain unclear. In this study, we investigate the role of the rhythmic gene Period2 (Per2) in triggering inflammation in the rectum and its contribution to the pathogenesis of rectal prolapse. We report that Per2 deficiency in mice increased susceptibility to intestinal inflammation and resulted in spontaneous rectal prolapse. We further demonstrated that PER2 was essential for the transcription of glycogen synthase 1 by interacting with the NF-κB p65. We show that the inhibition of Per2 reduced the levels of glycogen synthase 1 and glycogen synthesis in macrophages, impairing the capacity of pathogen clearance and disrupting the composition of gut microbes. Taken together, our findings identify a novel role for Per2 in regulating the capacity of pathogen clearance in macrophages and gut inflammation and suggest a potential animal model that more closely resembles human rectal prolapse.

4.
Cancer Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327670

RESUMO

Although the combination of immunotherapy and radiotherapy (RT) for the treatment of malignant tumors has shown rapid development, the insight of how RT remodels the tumor microenvironment to prime antitumor immunity involves a complex interplay of cell types and signaling pathways, much of which remains to be elucidated. Four tumor samples were collected from the same abdominal wall metastasis site of the patient with gastric cancer at baseline and during fractionated RT for single-cell RNA and T-cell receptor sequencing. The Seurat analysis pipeline and immune receptor analysis were used to characterize the gastric cancer metastasis ecosystem and investigated its dynamic changes of cell proportion, cell functional profiles and cell-to-cell communication during RT. Immunohistochemical and immunofluorescent staining and bulk RNA sequencing were applied to validate the key results. We found tumor cells upregulated immune checkpoint genes in response to RT. The infiltration and clonal expansion of T lymphocytes declined within tumors undergoing irradiation. Moreover, RT led to the accumulation of proinflammatory macrophages and natural killer T cells with enhanced cytotoxic gene expression signature. In addition, subclusters of dendritic cells and endothelial cells showed decrease in the expression of antigen present features in post-RT samples. More ECM component secreted by myofibroblasts during RT. These findings indicate that RT induced the dynamics of the immune response that should be taken into consideration when designing and clinically implementing innovative multimodal cancer treatment regimens of different RT and immunotherapy approaches.

5.
J Gene Med ; 26(1): e3647, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084655

RESUMO

Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.


Assuntos
Aminoácidos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Imunoterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
6.
Small ; 20(5): e2305855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759418

RESUMO

Solar interfacial evaporation is a promising method for solving the global shortage of fresh water. While 2D evaporators can efficiently localize solar-converted heat at the thin layer of the water-air interface, 3D solar evaporators can maximize energy reutilization while maintaining effective mass transport ability, few studies are conducted to explore the effect of gradient porosity on evaporation performance. In this study, a multifield assisted strategy based on a gradient 3D structure with high tortuosity is proposed, which creates a thermal field environment for efficient evaporation through high absorption of sunlight and excellent photothermal conversion and uses the gradient structure to optimize the internal pressure field to enhance water evaporation and transport. This hierarchically nanostructured solar absorber, with porosity inhomogeneity-induced pressure gradient and optimized temperature management, is a valuable design idea for manufacturing a more efficient 3D solar evaporator in the field of seawater desalination. Owing to the understanding of optimizing the dimension by various simulation parameters, the evaporation efficiencies of such structures are found to be 165.7%, suppressing the most evaporator. Moreover, it can provide new ideas and references for the fields of mass transfer and thermal management.

7.
J Transl Med ; 22(1): 198, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395884

RESUMO

BACKGROUND: Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS: The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS: The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS: The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.


Assuntos
Neoplasias do Colo , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico
8.
Blood ; 140(15): 1686-1701, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35881840

RESUMO

Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.


Assuntos
Células-Tronco Hematopoéticas , Esfingosina , Glicólise/genética , Células-Tronco Hematopoéticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Prolil Hidroxilases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Hum Genomics ; 17(1): 52, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312215

RESUMO

BACKGROUND: Inattention has been given to the pathogenesis of adolescent and young adult (AYA) hepatocellular carcinoma (HCC). Due to the more advanced tumor progression and poorer prognosis of AYA-HCC, together with a better tolerance ability, noncirrhotic background, and a stronger willingness to treat AYA-HCC, clinical and molecular biology studies are urgent and necessary, especially for those with hepatitis B infection. METHODS: For clinical aspects, the overall survival, the recurrence-free survival, and the Cox analyses were performed. Then, functional analysis, gene clustering, metabolic-related analysis, immune infiltration and competing endogenous RNA (ceRNA) construction were carried out using whole transcriptome sequencing technique. RESULTS: Based on the clinical information of our HCC cohort, the overall survival and recurrence-free survival rates were worse in the AYA group than in the elderly group as previously described. According to our whole transcriptome sequencing results, functional analysis revealed that metabolism-related pathways as well as protein translation and endoplasmic reticulum processing were enriched. Then the hub metabolism-related genes were screened by metabolite-protein interactions (MPIs) and protein-protein interactions (PPIs). Fatty acid metabolism is a crucial component of metabolic pathways, abnormalities of which may be the reason for the worse prognosis of HBV-AYA HCC. Finally, the relationship of disrupted expression of metabolism-related genes with immune infiltration was also analyzed, and the lncRNA‒miRNA‒mRNA-related ceRNA network for HBV-AYA HCC was constructed, which may provide new cues for HBV-AHA HCC prevention. CONCLUSION: The worse prognosis and recurrence rate of HBV-AYA HCC may be related to abnormalities in metabolism-related pathways, especially disorders of fatty acid metabolism.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Idoso , Adolescente , Adulto Jovem , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Prognóstico , Hepatite B/complicações , Hepatite B/genética , Ácidos Graxos
10.
Pediatr Res ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154142

RESUMO

BACKGROUND: Few studies have estimated the associations of systemic inflammation markers and high blood pressure (HBP) in the pediatric population. METHODS: Basing on data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we assessed the associations between four inflammation-related factors based on blood cell counts: systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and risk for pediatric HBP by estimating odds ratios (ORs) using multivariable logistic regression models. RESULTS: A total of 17,936 children aged 8-19 years were included in the analysis, representing about 36.7 million American children. The prevalence rates of elevated blood pressure (EBP) and hypertension (HTN) were 15.79% and 6.77%, respectively. The results showed that the ORs for EBP per standard deviation (SD) increment in SII and NLR were estimated at 1.11 [95% confidence interval (95%CI): 1.04, 1.17] and 1.08 (95%CI: 1.02, 1.15), respectively; and the OR for EBP per SD increment in LMP were estimated at 0.90 (95%CI: 0.83, 0.96). These associations were stronger in boys and younger children. CONCLUSIONS: The study suggested that inflammation-related factors could serve as easily accessible early biomarkers for HBP risk prediction and prevention in children and adolescents. IMPACT: The study suggested that inflammation-related factors could serve as easily accessible early biomarkers for HBP risk prediction and prevention in children and adolescents. This is the first study that demonstrates the close association between systemic inflammation markers and HBP in children and adolescents using nationally representative population data. The findings have more public health implications and support that systemic inflammation markers based on blood cell counts could serve as easily accessible biomarkers of HBP risk and prevention in earlier identification of the diseases.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38329394

RESUMO

A novel mycelium-forming actinomycete, designated strain NEAU-S30T, was isolated from the sandy soil of a sea beach in Shouguang city, Shandong province, PR China. The strain developed long chains of non-motile cylindrical spores with smooth surfaces on aerial mycelia. The results of a polyphasic taxonomic study indicated that NEAU-S30T represented a member of the genus Glycomyces. The results of 16S rRNA gene sequence analysis indicated that NEAU-S30T was closely related to 'Glycomycesluteolus' (98.97 % sequence similarity), Glycomycesalgeriensis (98.90 %), 'Glycomyces tritici' (98.83 %) and Glycomyces lechevalierae (98.76 %). The average nucleotide identity (ANI) values between NEAU-S30T and 'G. luteolus' NEAU-A15, G. algeriensis DSM 44727T, 'G. tritici' NEAU-C2 and G. lechevalierae DSM 44724T were 87.77, 87.53, 87.41 and 87.80 %, respectively. The digital DNA G+C content of the genomic DNA was 70.5 %. The whole-cell sugars contained ribose and xylose. The predominant menaquinones were MK-10(H2), MK-10(H4) and MK-10(H6). The predominant fatty acids were anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified glycolipid. On the basis of the results of comparative analysis of genotypic, phenotypic and chemotaxonomic data, the novel actinomycete strain NEAU-S30T (=JCM 33975T=CGMCC 4.7890T) represents the type strain of a novel species within the genus Glycomyces, for which the name Glycomyces niveus sp. nov. is proposed.


Assuntos
Actinobacteria , Actinomycetales , Areia , Solo , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
12.
Inorg Chem ; 63(24): 11252-11257, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38820055

RESUMO

Bipyramidal structures featuring planar rings serve as potential building blocks for one-dimensional (1D) nanostructures. Pure Ge atoms typically prefer to form three-dimensional rather than planar structures. Although a few-metal-doped bipyramids with pure Ge planar rings are predicted for constructing Ge-based 1D nanostructures, there is limited knowledge about those with both Ge and doped atoms on the same planar rings. Here, we report a hexagonal bipyramidal Mn3Ge5 cluster containing a Mn3Ge3 six-membered ring with the potential to construct a 1D germanium-based nanostructure. We investigated the structures and properties of Mn3Ge5-/0 using anion photoelectron spectroscopy and theoretical calculations. Mn3Ge5- has a C3v symmetric distorted hexagonal bipyramidal structure, while Mn3Ge5 has a C2v symmetric hexagonal bipyramidal structure. Chemical bonding analyses show that Mn3Ge5- could be considered as a [Mn3]V[Ge5]6- complex. First-principles calculations indicate that Mn3Ge5 may be used to construct a 1D ferrimagnetic [Mn3Ge5]∞ nanostructure.

13.
Inorg Chem ; 63(4): 2217-2223, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38207277

RESUMO

Birefringent crystals are the key components of functional optics, contributing significantly to scientific and technological advancements. To enhance birefringence, the presence of stereochemically active lone pairs offers a unique opportunity. In fact, strengthening the stereochemical activity and aligning uniformly lone pairs face tough challenges. Herein, an anisotropic layered crystal, Sb4O5I2, is discovered to exhibit enhanced birefringence. The influence of crystal symmetry on the birefringence of Sb4O5X2 (X = Cl, Br, or I) is found to be minor. Instead, the asymmetric nature of ABUCBs (i.e., cis-X3[SbO3]6- and cis-X3[SbO4]8-) plays a crucial role in enhancing the optical anisotropy. And the orientation of these ABUCBs is equally important. We demonstrate that by adjusting the Sb/I ratio from 5:1 to 2:1, all of the intralayer Sb atoms in Sb5O7I-P63 are forced onto the surface position. This structural adjustment leads to strengthened ionic bonding interactions, enhanced activity of the lone pairs, and uniform alignments of the ABUCBs in Sb4O5I2. Consequently, this results in a 6-fold increase in birefringence.

14.
Phys Chem Chem Phys ; 26(31): 21009-21018, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051262

RESUMO

Anion photoelectron spectroscopy and theoretical calculations were used to investigate the structural and bonding properties of WN10-/0. The electron affinity of WN10 is measured to be 1.582 ± 0.030 eV. The frequency of the NN stretch in WN10 is measured to be 2170 ± 80 cm-1, which is red-shifted with respect to that of the dinitrogen molecule indicating that the NN bonds are weakened in WN10. The theoretical adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of WN10- obtained by calculations at the CCSD(T)/CBS level agree well with experimental results. The structures of WN10-/0 are C4v symmetric pentacoordinated pyramidal structures with five end-on dinitrogen ligands. Our experiments show that the peak of WN10- is dominant in the mass spectrum of anionic WNn, whereas the mass peak of WN12+ is dominant in the mass spectrum of cationic WNn, implying that the stabilities of WNn clusters are strongly related to their charge states.

15.
J Phys Chem A ; 128(41): 8964-8969, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39356591

RESUMO

We investigate the structures and properties of Ge4C-/0 and Ge4CH-/0 clusters using anion photoelectron spectroscopy and theoretical calculations. Our calculations show that the first two low-lying isomers coexist in the experiments of Ge4C- and Ge4CH-. The first two low-lying isomers of Ge4C- have trigonal bipyramidal structures with the C atom on the equatorial plane and the top vertex, respectively. It is found that the first two low-lying isomers of Ge4CH- can be obtained by adding an H atom to the top and equatorial C atoms of Ge4C-, respectively. The AdNDP analyses reveal that the C atom in Ge4C forms one 4c-2e σ bond, two 4c-2e π bonds, and one 5c-2e σ bond with Ge atoms. The C atom in Ge4C interacts with an H- forming a C-H σ bond in Ge4CH-. AIMD simulation results indicate high dynamic stabilities of Ge4C and Ge4CH- at 300 and 500 K. Our results show that the structures and chemical bonding of Ge4B- and Ge4N+ are similar to those of Ge4C, while those of Ge4BH2- and Ge4NH resemble those of Ge4CH-.

16.
J Chem Phys ; 161(16)2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39435836

RESUMO

In order to understand the dispersion interactions between molecules and to provide information about the potential energy surface of geometry evolutions, NbN12- and N2·NbN12- complexes were investigated by using photoelectron spectroscopy and ab initio calculations. The experimental adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of NbN12- were both measured to be 2.129 ± 0.030 eV. The experimental ADE and VDE of N2·NbN12- were measured to be 2.17 ± 0.05 and 2.23 ± 0.05 eV, respectively, which are slightly higher than those of NbN12-. The structures of NbN12-/0 were confirmed to be hexacoordinated octahedrons. The investigation of N2·NbN12- structures shows that it is stable for N2 to bind to the face or vertex site of octahedron NbN12-; the face-side-on structure has the lowest energy. The calculations based on symmetry-adapted perturbation theory suggest that the dispersion term is predominant and leads to the stability of N2·NbN12- complexes.

17.
Cell Mol Biol Lett ; 29(1): 50, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594618

RESUMO

BACKGROUND: Melanoma is the most lethal skin cancer characterized by its high metastatic potential. In the past decade, targeted and immunotherapy have brought revolutionary survival benefits to patients with advanced and metastatic melanoma, but these treatment responses are also heterogeneous and/or do not achieve durable responses. Therefore, novel therapeutic strategies for improving outcomes remain an unmet clinical need. The aim of this study was to evaluate the therapeutic potential and underlying molecular mechanisms of RC48, a novel HER2-target antibody drug conjugate, either alone or in combination with dabrafenib, a V600-mutant BRAF inhibitor, for the treatment of advanced BRAF-mutant cutaneous melanoma. METHODS: We evaluated the therapeutic efficacy of RC48, alone or in combination with dabrafenib, in BRAF-mutant cutaneous melanoma cell lines and cell-derived xenograft (CDX) models. We also conducted signaling pathways analysis and global mRNA sequencing to explore mechanisms underlying the synergistic effect of the combination therapy. RESULTS: Our results revealed the expression of membrane-localized HER2 in melanoma cells. RC48 effectively targeted and inhibited the growth of HER2-positive human melanoma cell lines and corresponding CDX models. When used RC48 and dabrafenib synergically induced tumor regression together in human BRAF-mutant melanoma cell lines and CDX models. Mechanically, our results demonstrated that the combination therapy induced apoptosis and cell cycle arrest while suppressing cell motility in vitro. Furthermore, global RNA sequencing analysis demonstrated that the combination treatment led to the downregulation of several key signaling pathways, including the PI3K-AKT pathway, MAPK pathway, AMPK pathway, and FOXO pathway. CONCLUSION: These findings establish a preclinical foundation for the combined use of an anti-HER2 drug conjugate and a BRAF inhibitor in the treatment of BRAF-mutant cutaneous melanoma.


Assuntos
Antineoplásicos , Imidazóis , Imunoconjugados , Melanoma , Oximas , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fosfatidilinositol 3-Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoconjugados/genética , Imunoconjugados/uso terapêutico , Mutação
18.
Mediators Inflamm ; 2024: 6626706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576857

RESUMO

Background: Observational researches reported the underlying correlation of plasma myeloperoxidase (MPO) concentration with respiratory tract infections (RTIs), but their causality remained unclear. Here, we examined the cause-effect relation between plasma MPO levels and RTIs. Materials and Methods: Datasets of plasma MPO levels were from the Folkersen et al. study (n = 21,758) and INTERVAL study (n = 3,301). Summarized data for upper respiratory tract infection (URTI) (2,795 cases and 483,689 controls) and lower respiratory tract infection (LRTI) in the intensive care unit (ICU) (585 cases and 430,780 controls) were from the UK Biobank database. The primary method for Mendelian randomization (MR) analysis was the inverse variance weighted approach, with MR-Egger and weighted median methods as supplements. Cochrane's Q test, MR-Egger intercept test, MR pleiotropy residual sum and outliers global test, funnel plots, and leave-one-out analysis were used for sensitivity analysis. Results: We found that plasma MPO levels were positively associated with URTI (odds ratio (OR) = 1.135; 95% confidence interval (CI) = 1.011-1.274; P=0.032) and LRTI (ICU) (OR = 1.323; 95% CI = 1.006-1.739; P=0.045). The consistent impact direction is shown when additional plasma MPO level genome-wide association study datasets are used (URTI: OR = 1.158; 95% CI = 1.072-1.251; P < 0.001; LRTI (ICU): OR = 1.216; 95% CI = 1.020-1.450; P=0.030). There was no evidence of a causal effect of URTI and LRTI (ICU) on plasma MPO concentration in the reverse analysis (P > 0.050). The sensitivity analysis revealed no violations of MR presumptions. Conclusions: Plasma MPO levels may causally affect the risks of URTI and LRTI (ICU). In contrast, the causal role of URTI and LRTI (ICU) on plasma MPO concentration was not supported in our MR analysis. Further studies are needed to identify the relationship between RTIs and plasma MPO levels.


Assuntos
Estudo de Associação Genômica Ampla , Infecções Respiratórias , Humanos , Análise da Randomização Mendeliana , Bases de Dados Factuais , Peroxidase
19.
Chem Biodivers ; : e202401843, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39482255

RESUMO

In light of antibiotics being classified as environmental hormone-like compounds, their interference with the endocrine system has significantly impacted human health and ecological environments. This study employed Gaussian09 software's Density Functional Theory (DFT) to structurally optimize and perform frequency calculations on 23 representative antibiotic molecules, aiming to obtain microscopic quantum mechanical structural parameters.Physicochemical property parameters were acquired through the RDKit database in the ChemDes platform. Through multiple linear regression analysis, the primary factors affecting antibiotic biotoxicity (pLD50) were identified, leading to the establishment of a QSAR model. The predictive capability of the model was analyzed using leave-one-out cross-validation, and molecular docking was used to investigate the binding mode and mechanism of action between estrogen receptors (ER) and antibiotics. Research outcomes indicate that the established QSAR model C has regression coefficients R2 and leave-one-out cross-validation coefficients Q2 of 0.92474 and 0.74913, respectively, demonstrating good stability and predictive power. Analysis through molecular surface electrostatic potential, frontier molecular orbitals, molecular docking, and molecular dynamics revealed that the potential estrogenic disrupting effects are primarily due to hydrogen bonds and hydrophobic interactions between antibiotics and estrogen receptors. This provides a valuable exploration for identifying and screening PPCPs with potential estrogenic disrupting effects.

20.
Pediatr Exerc Sci ; : 1-9, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782367

RESUMO

PURPOSE: Inflammation regulation is important for obesity management and prevention of obesity-related diseases. This cross-sectional study aimed to analyze the independent and combined associations of physical activity and screen time with biomarkers of inflammation in children and adolescents with overweight/obesity. METHOD: A total of 1289 children and adolescents with overweight/obesity were included from the 2015 to 2018 National Health and Nutrition Examination Survey. Multivariable linear regressions were conducted for the association analyses. RESULTS: For the independent associations, a negative dose-dependent relationship was demonstrated between physical activity and inflammatory biomarker high-sensitivity C-reactive protein (hsCRP) in adolescents with overweight/obesity (P < .001) but not children; screen time was not associated with hsCRP in both children and adolescents. No significant association was found between physical activity or screen time with other inflammatory biomarkers. For the combined associations, there was an interaction between physical activity and screen time on hsCRP in adolescents with overweight/obesity (P = .014). In addition, the negative association between physical activity and hsCRP was greater in boys compared with girls and in Hispanic and non-Hispanic Black individuals compared with non-Hispanic White individuals. CONCLUSION: This study demonstrated a combined association of physical activity and screen time with inflammatory biomarker hsCRP in adolescents with overweight/obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA