Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824586

RESUMO

Wind tunnel tests have become one of the most effective ways to evaluate aerodynamics and aeroelasticity in bluff bodies. This paper has firstly overviewed the development of conventional wind tunnel test techniques, including high frequency base balance technique, static synchronous multi-pressure sensing system test technique and aeroelastic test, and summarized their advantages and shortcomings. Subsequently, two advanced test approaches, a forced vibration test technique and hybrid aeroelastic- force balance wind tunnel test technique have been comprehensively reviewed. Then the characteristics and calculation procedure of the conventional and advanced wind tunnel test techniques were discussed and summarized. The results indicated that the conventional wind tunnel test techniques ignored the effect of structural oscillation on the measured aerodynamics as the test model is rigid. A forced vibration test can include that effect. Unfortunately, a test model in a forced vibration test cannot respond like a structure in the real world; it only includes the effect of structural oscillation on the surrounding flow and cannot consider the feedback from the surrounding flow to the oscillation test model. A hybrid aeroelastic-pressure/force balance test technique that can observe unsteady aerodynamics of a test model during its aeroelastic oscillation completely takes the effect of structural oscillation into consideration and is, therefore, effective in evaluation of aerodynamics and aeroelasticity in bluff bodies. This paper has not only advanced our understanding for aerodynamics and aeroelasticity in bluff bodies, but also provided a new perspective for advanced wind tunnel test techniques that can be used for fundamental studies and engineering applications.

2.
Materials (Basel) ; 13(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024190

RESUMO

In this research, the influence of reinforcement bars on concrete pore structure and compressive strength was experimentally investigated. Concrete samples with two mixture ratios and nine reinforcement ratios were provided. Tests were conducted on concrete pore structure and compressive strength at three ages (3 d, 7 d, and 28 d). It was found that reinforcement bars changed the concrete pore structure. In terms of size, the pore structure of concrete increased with the increase of reinforcement ratio. At the same age, concrete compressive strength in reinforced concrete specimens saw a gradual reduction when reinforcement ratio increased. A formula was proposed to calculate the compressive strength of concrete in reinforced specimens according to the strength of unreinforced concrete.

3.
Materials (Basel) ; 13(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012764

RESUMO

Graphene oxide (GO) has been widely used as an additive due to its numerous unique properties. In this study, the compressive strength, flexural strength and elasticity modulus of concrete containing 0.02 wt%, 0.05 wt % and 0.08 wt % GO, and its dry shrinkage performance have been experimentally investigated. After the sample preparation, apparatus for compression test and flexural test were used to test the relevant properties of concrete containing GO. The dial indicators were used to measure the shrinkage of samples. The results indicate that GO can considerably improve the compressive strength, flexural strength, and elasticity modulus of concrete at the concrete age of 28 days by 4.04-12.65%, 3.8-7.38%, and 3.92-10.97%, respectively, which are substantially smaller than the increment at the age of 3 d by 5.02-21.51%, 4.25-13.06%, and 6.07-27.45% under a water-cement ratio of 0.35. It was also found that GO can increase the shrinkage strain of concrete. For example, at the age of 60 days, 0.02 wt%, 0.05 wt% and 0.08 wt% GO can increase the shrinkage strain of ordinary concrete by 1.99%, 5.79% and 7.45% respectively under a water-cement ratio of 0.49. The study has advanced our understanding on mechanical and shrinkage behavior of concrete containing GO.

4.
Materials (Basel) ; 12(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561593

RESUMO

In this study, the shrinkage and creep of concrete containing graphene oxide (GO) nanosheets were experimentally and theoretically investigated. Experiments for the shrinkage and creep of concrete with 0.02% and 0.08% GO nanosheets by the weight of cement and common concrete were carried out. Subsequently, the influence of GO nanosheets on the shrinkage and creep of concrete was analyzed and discussed. A modified model was developed to accurately predict the shrinkage and creep of concrete containing GO nanosheets after models for predicting shrinkage and creep of common concrete were compared and the influential factors and application scope were determined. Results indicate that: (1) GO nanosheets can increase the shrinkage strain and reduce the creep coefficient of concrete, and (2) a modified ACI209 (92) model can accurately predict the shrinkage and creep of concrete containing GO nanosheets. Factors considering concrete strength can be introduced in the model to improve the model accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA