Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2219491120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37851678

RESUMO

In conventional superconductors, electron-phonon coupling plays a dominant role in generating superconductivity. In high-temperature cuprate superconductors, the existence of electron coupling with phonons and other boson modes and its role in producing high-temperature superconductivity remain unclear. The evidence of electron-boson coupling mainly comes from angle-resolved photoemission (ARPES) observations of [Formula: see text]70-meV nodal dispersion kink and [Formula: see text]40-meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons is still under debate. Here we report findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultrahigh-resolution laser-based ARPES measurements, we found that the electrons are coupled simultaneously with two sharp modes at [Formula: see text]70meV and [Formula: see text]40meV in different superconductors with different dopings, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. These observations favor phonons as the origin of the modes coupled with electrons and the observed electron-mode couplings are unusual because the associated energy scales do not exhibit an obvious energy shift across the superconducting transition. We further find that the well-known "peak-dip-hump" structure, which has long been considered a hallmark of superconductivity, is also omnipresent and consists of "peak-double dip-double hump" finer structures that originate from electron coupling with two sharp modes. These results provide a unified picture for the [Formula: see text]70-meV and [Formula: see text]40-meV energy scales and their evolutions with momentum, doping and temperature. They provide key information to understand the origin of these energy scales and their role in generating anomalous normal state and high-temperature superconductivity.

2.
Opt Express ; 28(9): 13895-13906, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403855

RESUMO

Compact high-power yellow laser is a critical part for sodium beacon adaptive optical systems. A narrow-linewidth quasi-continuous-wave (QCW) solid-state 589 nm laser with high-power and high beam quality simultaneously is investigated here, operating in hundreds-microsecond pulse duration with a tunable repetition rate of 400 to 1 kHz, which is flexible to allow the telescope to move in observing direction. The laser source is based on employing sum-frequency generation between 1319 and 1064 nm QCW Nd:YAG amplifiers. For a 100 µs pulse duration and 400 Hz repetition rate, the yellow laser provides a highest output power of 86.1 W with beam quality M2 = 1.37. The central wavelength can be precisely tuned to sodium-D2a line at 589.159 nm with a ∼440 MHz linewidth. This is the maximum power-reported for all-solid-state sodium guide star laser demonstrated to date. The result represents a key step toward solving the requirement of multi-conjugate adaptive optics for large adaptive optical telescopes.

3.
Opt Express ; 28(6): 8056-8063, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225438

RESUMO

An adjustable slab-aberration compensator (ASAC) with the ability to compensate the large magnitude inherent wavefront aberrations in the slab width direction is proposed and experimentally demonstrated. The ASAC has a size of 130mm×45mm (effective aperture of 75mm×28mm) and 11 actuators along the length with a contact spacing of 8 mm. The design is optimized by simulations in terms of the mirror's coupling coefficient with the contact areas, mechanical properties of the driving units, and the mirror thickness. The initial surface figure of the ASAC has PV and RMS values of 55 nm and 10 nm, and the dynamic range is 30 µm. In our experiments, a 20 kW Nd: YAG quasi-continuous wave (QCW) slab laser is further compensated by the ASAC system. The beam quality increases from 15× to 3.5× diffraction limit at 20 kW output after correction. Besides, the proposed ASAC can maintain the surface shape after power shutdown and have good thermal stability. The temperature rise of the ASAC is less than 7 °C in the 20 kW laser correction experiment.

4.
Opt Lett ; 45(7): 1818-1821, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236007

RESUMO

A 100 W level kilohertz repetition-rate microsecond (µs)-pulse all-solid-state sodium beacon laser at 589 nm is demonstrated for the first time, to the best of our knowledge, via combining two independent µs-pulsed lasers. Each beamlet is generated by the sum-frequency mixing of pulsed 1064 and 1319 nm lasers in a lithium triborate (LBO) crystal, which operate at 500 Hz pulse repetition frequency with 61 W $p$p-polarized and 53 W $s$s-polarized output, respectively. An incoherent sequence combining technology of polarized laser beams is employed to add the two beamlets. The average power of the combined beam is up to 107.5 W with a combining efficiency of 94.3%. The combined beam has a 1 kHz repetition rate with ${\sim}{120}\;\unicode{x00B5} {\rm s}$∼120µs pulse duration and beam quality ${M^2} = {1.41}$M2=1.41. The central wavelength with a linewidth of ${\sim}{0.3}\;{\rm GHz}$∼0.3GHz is locked to a sodium ${{\rm D}_{2a}}$D2a absorption line. To the best of our knowledge, this is a record-high power operating at kilohertz for µs-pulsed solid-state sodium beacon lasers.

5.
Appl Opt ; 59(8): 2606-2609, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225804

RESUMO

We present a power-scalable high-power single-frequency continuous-wave 1342 nm master oscillator power amplifier (MOPA) system that consists of a polarized single-frequency 1342 nm LD seed laser, a Raman fiber preamplifier, and a three-stage ${\rm Nd}:{{\rm YVO}_4}$Nd:YVO4 power amplifier. The single-frequency output power of 30 W at 1342 nm is achieved with the beam quality factors ${{\rm M}^{2\:}} = {1}.{26}$M2=1.26, and the power stability for 1 h is better than ${\pm }\;{0}.{5}\% $±0.5%.

6.
Appl Opt ; 59(2): 459-462, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225331

RESUMO

A void-free bonding technique was demonstrated for a large slab Nd: YAG crystal with a bonding surface dimension of ∼160mm×70mm. By using the novel fluxless oxide layer removal technology, the indium-oxide barrier problem was resolved. With the help of electrochemical-polished indium solder and a plasma-cleaned heat sink, the solderability of the indium was enhanced; in particular, the contact angle of the solder was improved from 51° to 31°. With the largest-bonding-size slab, a single-slab laser created a maximum output power of 7.3 kW under an absorbed pump power of 12.8 kW, corresponding to an optical to optical efficiency of 57% and a slope conversion of 67.8%. By detecting the wavefront of the interferometer before and after bonding, the RMS of wavefront was 0.192λ and 0.434λ (λ=633nm), respectively. To the best of our knowledge, this is the largest void-free bonding size for a laser slab and the highest output power achieved from a single-slab crystal laser oscillator.

7.
Opt Express ; 27(9): 12255-12263, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052769

RESUMO

The polychromatic laser guide star (PLGS) is one of the solutions proposed to measure the differential atmospheric tip-tilt. A watts-level microsecond pulse all solid state laser source with two wavelengths at 589 and 819.7 nm are developed to perform a proof-of-concept on-sky test for what is believed to be the first time. By sum-frequency of 1319 and 1064 nm, a 44 W maximum average output power at 589.159 nm is generated with the pulse width of ~90 µs at 500 Hz, the linewidth of 0.46 pm, and the beam quality of M2 = 1.50. Meanwhile, a 2.4 W average output power is achieved operating at 819.710 nm with the pulse width of ~25 µs at 500 Hz, the linewidth of 0.8 pm, and beam quality factor of M2 = 1.20, which is end-pumped by a frequency-doubled 1064 nm Nd:YAG laser. Moreover, double resonant fluorescence in sodium cell with two step excitation of sodium atom from 3S1/2 to 3D5/2 via 3P3/2 level is observed clearly by tuning the wavelength of 589 and 819.7 nm beams. In the proof-of-principle experiment, it is preliminarily verified that this laser system is expected to be applied to the sky experiment.

8.
Opt Lett ; 44(18): 4471-4474, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517909

RESUMO

We report a compact, long nanosecond (ns) pulse duration stretched laser source by a multi-pass cavity (MPC). Based on the combination of the MPC and pump power, a high-power high beam quality 1064 nm Q-switched Nd:YAG laser with a pulse duration adjustable over the range of 160-1000 ns was obtained at a pulse repetition frequency of 10 kHz for the first time, to the best of our knowledge. At a typical pulse width of 560 ns, an average output power of 10.6 W was successfully achieved. The beam quality factor M2 was measured to be 1.45 with a good Gaussian mode.

9.
Opt Lett ; 44(6): 1293-1296, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874633

RESUMO

Slab gain media with large aspect ratios were difficult to be adopted in ultrafast regenerative amplifiers (RAs) due to the obstacle of mode matching with the seed beam. We proposed that an unstable cavity could be employed to solve this difficulty by taking the advantage of its large fundamental mode volume. In this way, an Nd:YVO4 slab-based picosecond RA has been successfully demonstrated using a stable-unstable hybrid cavity. The maximum average output power of 10.5 W was achieved at the repetition rate of 10 kHz. The beam quality factor M2 was measured to be 1.54 in the stable direction and 2.26 in the unstable direction.

10.
Appl Opt ; 58(32): 8900-8904, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31873668

RESUMO

A dual-wavelength ${{\rm TEM}_{01}}$TEM01 mode synchronous continuous wave passively mode-locked (CWML) Nd:YAG laser has been demonstrated for the first time to the best of our knowledge with a semiconductor saturable absorber mirror (SESAM) at 1319 and 1338 nm. The maximum average output power of 10.84 W was obtained at a 113.8 W absorbed pump power, corresponding to an optical-to-optical conversion efficiency of 9.5%. The dual-wavelength CWML pulses had a pulse duration of 35.1 ps at a repetition rate of 76 MHz. The beam quality was measured to be ${{\rm M}^2} = {2.51}$M2=2.51.

11.
Proc Natl Acad Sci U S A ; 113(51): 14656-14661, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930314

RESUMO

Silicene, analogous to graphene, is a one-atom-thick 2D crystal of silicon, which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, a hotly debated question is whether these key states can survive when silicene is grown or supported on a substrate. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3 × 3)/Ag(111), we reveal the presence of six pairs of Dirac cones located on the edges of the first Brillouin zone of Ag(111), which is in sharp contrast to the expected six Dirac cones centered at the K points of the primary silicene(1 × 1) Brillouin zone. Our analysis shows clearly that the unusual Dirac cone structure we have observed is not tied to pristine silicene alone but originates from the combined effects of silicene(3 × 3) and the Ag(111) substrate. Our study thus identifies the case of a unique type of Dirac cone generated through the interaction of two different constituents. The observation of Dirac cones in silicene/Ag(111) opens a unique materials platform for investigating unusual quantum phenomena and for applications based on 2D silicon systems.

12.
Opt Lett ; 43(3): 539-542, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400835

RESUMO

We have proposed a novel approach to realize a high-energy ultrafast optical parametric oscillator (OPO) by intracavity pumping in a regenerative amplifier. In this way, we have experimentally demonstrated an unprecedented pulse energy of 30.5 µJ from a 1.5-µm singly resonant synchronously pumped OPO at a pulse repetition rate of 10 kHz with a pulse width of 7.0 ps. To the best of our knowledge, this is the highest pulse energy from an ultrafast laser OPO.

13.
Opt Lett ; 43(11): 2563-2566, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856430

RESUMO

We report a high-energy single-frequency deep-ultraviolet (DUV) solid-state laser at 167.079 nm by the eighth-harmonic generation of a diode-pumped Nd:LGGG laser. A maximum DUV laser output energy of 1.5 µJ at a 5 Hz repetition rate with a 200 µs pulse duration is achieved. The central wavelength of the DUV laser is located at 167.079 nm and can be finely tuned from 167.075 to 167.083 nm. The linewidth is estimated to be 0.025 pm. To the best of our knowledge, this is the first Letter reporting a high-energy single-frequency solid-state DUV laser below 170 nm. The successful demonstration of the high-energy single-frequency DUV laser source with the unique wavelength is useful for direct detection of a Al+27 ion via resonance fluorescence in a multi-ion optical clock.

14.
Opt Express ; 25(22): 26500-26507, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092139

RESUMO

266 nm laser output in NaSr3Be3B3O9F4 crystal by the fourth harmonic generation process with a picosecond mode-locked Nd-based YAG laser has been done for the first time. When the input pumping energy was 870 µJ at 532 nm, a 280 µJ 266 nm UV laser was obtained and the corresponding conversion efficiency was 35.9%. Further investigations identified that NaSr3Be3B3O9F4 has a large acceptance angle width of 0.47 (mrad • cm), a small walk-off angle of 35.43 mrad and a large deff as 0.62 pm/V for the fourth harmonic generation. These results indicate that NSBBF is applicable for high-power 266 nm laser generation.

15.
Opt Express ; 25(11): 12860-12866, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786638

RESUMO

A picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) with LiInSe2 crystal was demonstrated for the first time. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser and injected by a barium boron oxide (BBO)-based widely tunable near-infrared seed. A maximum idler pulse energy of 433 µJ at 4 µm has been obtained under a pump energy of 17 mJ, and the corresponding pulse duration was estimated to be ~13 ps. To our knowledge, this is the highest single pulse energy generated by LiInSe2 crystal. Furthermore, an idler spectrum tuning from 3.6 to 4.8 µm was investigated at fixed pump energy of 15 mJ.

16.
Opt Lett ; 42(13): 2467-2470, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957261

RESUMO

A pulse width adjustable 1064 nm Q-switched cavity dumped Nd:YVO4 laser was realized for the first time, to the best of our knowledge, by rotating an intracavity quarter-wave plate (QWP) and a Pockels cell (PC). The pulse width adjustment range was 4.8-7.8 ns with a constant output power of 3.6 W, and it reached 4.8-13.5 ns for a lower output power of 1.3 W. The pulse width was dependent mostly on the rotating angle of the QWP and PC, but independent of the gain and pulse repetition rate.

17.
Opt Lett ; 42(11): 2098-2101, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569854

RESUMO

Mid-infrared (MIR) nonlinear optical crystals of LiInSe2 (LISe) were grown by a modified Bridgman technique on a (001)-seed. A 7-12 µm widely tunable picosecond (ps) MIR optical parametric amplifier (OPA) based on a LISe crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser and injected by a KTiOPO4 (KTP)-based widely tunable near-infrared seed. The idler operating at 7.5 µm with the highest pulse energy of 170 µJ was obtained under a pump energy of 14 mJ. The corresponding energy conversion efficiency is ∼1.21%, and the photon conversion efficiency is 8.6%. The output energies were measured to be ∼121 µJ at 7 µm and ∼21 µJ at 12 µm.

18.
Appl Opt ; 56(12): 3445-3448, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430211

RESUMO

We demonstrate a compact, high-power, quasi-continuous-wave (QCW) end-pumped 1319 nm Nd:YAG slab amplifier laser with good beam quality. The laser is based on a QCW pulse Nd:YAG master oscillator and Nd:YAG slab amplifier with multi-pass zigzag architecture. The amplifier operates at a pulse repetition frequency of 500 Hz and pulse width of ∼105 µs, delivering a maximum output power of 51.5 W under absorbed pump power of 217.8 W and corresponding to an extraction efficiency of 14.2%. The beam quality factor is measured to be Mx2=1.61 and My2=1.81 in the orthogonal directions. To the best of our knowledge, this is the first compact, high-power, high-beam-quality QCW Nd:YAG amplifier at 1319 nm based on a multi-pass zigzag slab structure.

19.
Proc Natl Acad Sci U S A ; 111(52): 18501-6, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25502774

RESUMO

In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

20.
Opt Lett ; 41(7): 1598-600, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192296

RESUMO

BaAlBO3F2 (BABF) crystals are a recently developed and promising nonlinear optical material, notably for the third harmonic generation of ultraviolet (UV) light at 355 nm. However, the fourth harmonic generation of UV light at 266 nm has never been obtained by using a BABF crystal due to its relatively small birefringence. We demonstrate that the birefringence of BABF can be effectively increased by doping it with Ga3+. The fourth harmonic generation of UV light at 266 nm was achieved for the first time in a Ga-doped BABF crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA