Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 198: 108121, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851309

RESUMO

The subgenus Aeschyntelus includes six species that show variations in body color and shape, thus making it difficult to identify them based on morphological identification alone. To date, no genetic study has evaluated species within this genus. Herein, we collected 171 individuals from 90 localities of Rhopalus and employed an integrative taxonomic approach that incorporated morphological data, mitochondrial genomic data (COI, whole mitochondrial data) and nuclear genomic data (18S + 28S rRNAs, nuclear genome-wide SNPs) to delineate species boundaries. Our analyses confirmed the status of nine described species of Rhopalus and proposed the recognition of one new species known as Rhopalus qinlinganus sp. nov., which is classified within the subgenus Aeschyntelus. Discrepancies arising from nuclear and mitochondrial data suggest the presence of mito-nuclear discordance. Specifically, mitochondrial data indicated admixture within Clade A, comprising R. kerzhneri and R. latus, whereas genome-wide SNPs unambiguously identified two separate species, aligning with morphological classification. Conversely, mitochondrial data clearly distinguished Clade B- consisting of R. sapporensis into two lineages, whereas genome-wide SNPs unequivocally identified a single species. Our study also provides insights into the evolutionary history of Aeschyntelus, thus indicating that it likely originated in East Asia during the middle Miocene. The development of Aeschyntelus biodiversity in the southwestern mountains of China occurred via an uplift-driven diversification process. Our findings highlight the necessity of integrating both morphological and multiple molecular datasets for precise species identification, particularly when delineating closely related species. Additionally, it reveals the important role of mountain orogenesis on speciation within the southwestern mountains of China.


Assuntos
Heterópteros , Filogenia , Filogeografia , Animais , Heterópteros/genética , Heterópteros/classificação , Heterópteros/anatomia & histologia , DNA Mitocondrial/genética , Núcleo Celular/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , China
2.
Mol Phylogenet Evol ; 195: 108056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493987

RESUMO

The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.


Assuntos
Heterópteros , Animais , Filogeografia , Filogenia , Heterópteros/genética , Evolução Biológica , Mitocôndrias/genética , DNA Mitocondrial/genética , Variação Genética
3.
Arch Insect Biochem Physiol ; 116(2): e22124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860794

RESUMO

Pesticides are widely used for pest control to promote sustained and stable growth of agricultural production. However, indiscriminate pesticide usage poses a great threat to environmental and human health. In recent years, nanotechnology has shown the ability to increase the performance of conventional pesticides and has great potential for improving adhesion to crop foliage, solubility, stability, targeted delivery, and so forth. This review discusses two types of nanopesticides, namely, carrier-free nanopesticides and carrier-based nanopesticides, that can precisely release necessary and sufficient amounts of active ingredients. At first, the basic characterization and preparation methods of these two distinct types of nanopesticides are briefly summarized. Subsequently, current applications and future perspectives on scientific examples and strategies for promoting the usage efficacy and reducing the environmental risks of these nanopesticides were also described. Overall, nanopesticides can promote higher crop yields and lay the foundation for sustainable agriculture and global food security.


Assuntos
Controle de Pragas , Praguicidas , Praguicidas/química , Controle de Pragas/métodos , Animais , Nanotecnologia/métodos , Nanopartículas/química , Controle de Insetos/métodos , Produtos Agrícolas
4.
Arch Insect Biochem Physiol ; 115(4): e22107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591567

RESUMO

RNA interference (RNAi)-based gene silencing is a feasible and sustainable technology for the management of hemipteran pests by double-stranded RNA involvement, including small-interfering RNA, microRNA, and Piwi-interacting RNA (piRNA) pathways, that may help to decrease the usage of chemical insecticides. However, only a few data are available on the somatic piRNAs and their biogenesis genes in Riptortus pedestris, which serves as a significant pest of soybean (Glycine max). In this study, two family members of the PIWI gene were identified and characterized in R. pedestris, containing Argonaute3 (RpAgo3) and Aubergine (RpAub) genes with conserved protein domains, and their clusters were validated by phylogenetic analysis. In addition, they were widely expressed in all developmental stages of the whole body of R. pedestris and had lower expression levels in R. pedestris guts under different rearing conditions based on previous transcriptome sequencing. Furthermore, abundant clean reads were filtered to a total number of 45,998 piRNAs with uridine bias at the first nucleotide (nt) position and 26-32 nt in length by mapping onto the reference genome of R. pedestris according to our previous whole-transcriptome sequencing. Finally, our data revealed that gut bacterial changes were significantly positively or negatively associated with differentially expressed piRNAs among the five comparison groups with Pearson correlation analysis. In conclusion, these findings paved new avenues for the application of RNAi-based biopesticides for broad-spectrum hemipteran pest control.


Assuntos
Heterópteros , RNA de Interação com Piwi , Animais , Filogenia , Heterópteros/genética , Heterópteros/metabolismo , Glycine max , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Front Microbiol ; 15: 1386345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827147

RESUMO

Insects depend on humoral immunity against intruders through the secretion of antimicrobial peptides (AMPs) and immune effectors via NF-κB transcription factors, and their fitness is improved by gut bacterial microbiota. Although there are growing numbers of reports on noncoding RNAs (ncRNAs) involving in immune responses against pathogens, comprehensive studies of ncRNA-AMP regulatory networks in Riptortus pedestris, which is one of the widely distributed pests in East Asia, are still not well understood under feeding environmental changes. The objective of this study employed the whole-transcriptome sequencing (WTS) to systematically identify the lncRNAs (long noncoding RNA) and circRNAs (circular RNA) and to obtain their differential expression from the R. pedestris gut under different feeding conditions. Functional annotation indicated that they were mainly enriched in various biological processes with the GO and KEGG databases, especially in immune signaling pathways. Five defensin (four novel members) and eleven lysozyme (nine novel members) family genes were identified and characterized from WTS data, and meanwhile, phylogenetic analysis confirmed their classification. Subsequently, the miRNA-mRNA interaction network of above two AMPs and lncRNA-involved ceRNA (competing endogenous RNA) regulatory network of one lysozyme were predicted and built based on bioinformatic prediction and calculation, and the expression patterns of differentially expressed (DE) defensins, and DE lysozymes and related DE ncRNAs were estimated and selected among all the comparison groups. Finally, to integrate the analyses of WTS and previous 16S rRNA amplicon sequencing, we conducted the Pearson correlation analysis to reveal the significantly positive or negative correlation between above DE AMPs and ncRNAs, as well as most changes in the gut bacterial microbiota at the genus level of R. pedestris. Taken together, the present observations provide great insights into the ncRNA regulatory networks of AMPs in response to rearing environmental changes in insects and uncover new potential strategies for pest control in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA