Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054970

RESUMO

The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.


Assuntos
Arabidopsis , Células-Tronco Pluripotentes , Arabidopsis/genética , Diferenciação Celular , Transporte Biológico , Ácidos Indolacéticos
2.
Biochemistry ; 62(10): 1577-1587, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092990

RESUMO

A recently discovered heme-dependent enzyme tyrosine hydroxylase (TyrH) offers a green approach for functionalizing the high-strength C-H and C-F bonds in aromatic compounds. However, there is ambiguity regarding the nature of the oxidant (compound 0 or compound I) involved in activating these bonds. Herein, using comprehensive molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical calculations, we reveal that it is compound I (Cpd I) that acts as the primary oxidant involved in the functionalization of both C-F and C-H bonds. The energy barrier for C-H and C-F activation using compound 0 (Cpd 0) as an oxidant was very high, indicating that Cpd 0 cannot be an oxidant. Consistent with the previous experimental finding, our simulation shows two different conformations of the substrate, where one orientation favors the C-H activation, while the other conformation prefers the C-F activation. As such, our mechanistic study shows that nature utilizes just one oxidant, that is, Cpd I, but it is the active site conformation that decides whether it selects C-F or C-H functionalization which may resemble involvement of two different oxidants.


Assuntos
Heme , Tirosina 3-Mono-Oxigenase , Heme/química , Oxidantes/química , Simulação de Dinâmica Molecular , Domínio Catalítico
3.
Clin Infect Dis ; 77(1): 138-144, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947143

RESUMO

BACKGROUND: The World Health Organization recommends vaccines for prevention and control of typhoid fever, especially where antimicrobial-resistant typhoid circulates. In 2018, the Navi Mumbai Municipal Corporation (NMMC) implemented a typhoid conjugate vaccine (TCV) campaign. The campaign targeted all children aged 9 months through 14 years within NMMC boundaries (approximately 320 000 children) over 2 vaccination phases. The phase 1 campaign occurred from 14 July 2018 through 25 August 2018 (71% coverage, approximately 113 420 children). We evaluated the phase 1 campaign's programmatic effectiveness in reducing typhoid cases at the community level. METHODS: We established prospective, blood culture-based surveillance at 6 hospitals in Navi Mumbai and offered blood cultures to children who presented with fever ≥3 days. We used a cluster-randomized (by administrative boundary) test-negative design to estimate the effectiveness of the vaccination campaign on pediatric typhoid cases. We matched test-positive, culture-confirmed typhoid cases with up to 3 test-negative, culture-negative controls by age and date of blood culture and assessed community vaccine campaign phase as an exposure using conditional logistic regression. RESULTS: Between 1 September 2018 and 31 March 2021, we identified 81 typhoid cases and matched these with 238 controls. Cases were 0.44 times as likely to live in vaccine campaign communities (programmatic effectiveness, 56%; 95% confidence interval [CI], 25% to 74%; P = .002). Cases aged ≥5 years were 0.37 times as likely (95% CI, .19 to .70; P = .002) and cases during the first year of surveillance were 0.30 times as likely (95% CI, .14 to .64; P = .002) to live in vaccine campaign communities. CONCLUSIONS: Our findings support the use of TCV mass vaccination campaigns as effective population-based tools to combat typhoid fever.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Incidência , Índia/epidemiologia , Estudos Prospectivos , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Vacinas Atenuadas , Vacinas Conjugadas
4.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427826

RESUMO

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

5.
Chemistry ; 28(63): e202202405, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952312

RESUMO

Herein we have reported the discovery of a pentacyclic building block comprised of fused indole-quinoline and piperidinone from the natural product perophoramidine as a formidable anticancer agent. The compounds were synthesized in six steps where the key steps involved a blue LED mediated intramolecular cyclopropanation of the indole intermediates and concomitant reduction of the associated aryl nitro moiety to nitroso in the molecule. Cytotoxicity screening of the compounds against an array of cancer cells that is, MCF7, HCT116 and A549 demonstrated 0.6 to 9 µM IC50 s by few of the compounds. γH2AX immunofluorescence assay of the two most potent molecules from the phenotypic screening with anti-γ-H2AX Alexa Fluor 488 antibody revealed extensive DNA damage of the A549 cells which indicated probable PARP inhibition (similar to Perophoramidine). Through molecular docking and molecular dynamic (MD) simulation studies the binding efficiency of our compounds with poly(ADP-ribose)polymerase 1 (PARP 1) enzyme was determined. Chemiluminescent PARP Assay with Histone-coated strips indicated that the most active compounds from the phenotypic screening induced PARP-1 inhibition with IC50 s of 1.3→1.5 µM.


Assuntos
Quebras de DNA de Cadeia Dupla , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1 , DNA , Indóis
6.
J Chem Inf Model ; 62(4): 1025-1035, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35129977

RESUMO

Cytochrome P450 peroxygenases use hydrogen peroxide to hydroxylate long-chain fatty acids by bypassing the use of O2 and a redox partner. Among the peroxygenases, P450OleT uniquely performs decarboxylation of fatty acids and production of terminal olefins. This route taken by P450OleT is intriguing, and its importance is augmented by the practical importance of olefin production. As such, this mechanistic choice merits elucidation. To address this puzzle, we use hybrid QM/MM calculations and MD simulations for the OleT enzyme as well as for the structurally analogous enzyme, P450BSß. The study of P450OleT reveals that the protonated His85 in the wild-type P450OleT plays a crucial role in steering decarboxylation activity by stabilizing the corresponding hydroxoiron(IV) intermediate (Cpd II). In contrast, for P450BSß in which Q85 replaces H85, the respective Cpd II species is unstable and it reacts readily with the substrate radical by rebound, producing hydroxylation products. As shown, this single-site difference creates in P450OleT a local electric field (LEF), which is significantly higher than that in P450BSß. In turn, these LEF differences are responsible for the different stabilities of the respective Cpd II/radical intermediates and hence for different functions of the two enzymes. P450BSß uses the common rebound mechanism and leads to hydroxylation, whereas P450OleT proceeds via decarboxylation and generates terminal olefins. Olefin production projects the power of a single residue to alter the LEF and the enzyme's function.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/química , Hidroxilação , Oxigenases de Função Mista , Oxirredução
7.
J Chem Inf Model ; 62(24): 6679-6690, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073971

RESUMO

Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water models─TIP3P, SPC/E, and OPC─for three different CYP450 enzymes─CYP450BM3, CYP450OleT, and CYP450BSß─during MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSß, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.


Assuntos
Sistema Enzimático do Citocromo P-450 , Água , Água/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Domínio Catalítico
8.
Proc Natl Acad Sci U S A ; 116(5): 1692-1697, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635425

RESUMO

Immune checkpoint therapy (ICT) has transformed cancer treatment in recent years; however, treatment response is not uniform across tumor types. The tumor immune microenvironment plays a critical role in determining response to ICT; therefore, understanding the differential immune infiltration between ICT-sensitive and ICT-resistant tumor types will help to develop effective treatment strategies. We performed a comprehensive analysis of the immune tumor microenvironment of an ICT-sensitive tumor (melanoma, n = 44) and an ICT-resistant tumor (pancreatic cancer, n = 67). We found that a pancreatic tumor has minimal to moderate infiltration of CD3, CD4, and CD8 T cells; however, the immune infiltrates are predominantly present in the stromal area of the tumor and are excluded from tumoral area compared with melanoma, where the immune infiltrates are primarily present in the tumoral area. Metastatic pancreatic ductal adenocarcinomas (PDACs) had a lower infiltration of total T cells compared with resectable primary PDACs, suggesting that metastatic PDACs have poor immunogenicity. Further, a significantly higher number of CD68+ macrophages and VISTA+ cells (also known as V-domain immunoglobulin suppressor of T cell activation) were found in the pancreatic stromal area compared with melanoma. We identified VISTA as a potent inhibitory checkpoint that is predominantly expressed on CD68+ macrophages on PDACs. These data suggest that VISTA may be a relevant immunotherapy target for effective treatment of patients with pancreatic cancer.


Assuntos
Antígenos B7/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Humanos , Imunoterapia/métodos , Ativação Linfocitária/fisiologia , Microambiente Tumoral/fisiologia
9.
J Chem Inf Model ; 61(11): 5469-5483, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34666487

RESUMO

COVID-19, an acute viral pneumonia, has emerged as a devastating pandemic. Drug repurposing allows researchers to find different indications of FDA-approved or investigational drugs. In this current study, a sequence of pharmacophore and molecular modeling-based screening against COVID-19 Mpro (PDB: 6LU7) suggested a subset of drugs, from the Drug Bank database, which may have antiviral activity. A total of 44 out of 8823 of the most promising virtual hits from the Drug Bank were subjected to molecular dynamics simulation experiments to explore the strength of their interactions with the SARS-CoV-2 Mpro active site. MD findings point toward three drugs (DB04020, DB12411, and DB11779) with very low relative free energies for SARS-CoV-2 Mpro with interactions at His41 and Met49. MD simulations identified an additional interaction with Glu166, which enhanced the binding affinity significantly. Therefore, Glu166 could be an interesting target for structure-based drug design. Quantitative structural-activity relationship analysis was performed on the 44 most promising hits from molecular docking-based virtual screening. Partial least square regression accurately predicted the values of independent drug candidates' binding energy with impressively high accuracy. Finally, the EC50 and CC50 of 10 drug candidates were measured against SARS-CoV-2 in cell culture. Nilotinib and bemcentinib had EC50 values of 2.6 and 1.1 µM, respectively. In summary, the results of our computer-aided drug design provide a roadmap for rational drug design of Mpro inhibitors and the discovery of certified medications as COVID-19 antiviral therapeutics.


Assuntos
COVID-19 , Inibidores de Proteases , Antivirais/farmacologia , Proteases 3C de Coronavírus , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pirimidinas , SARS-CoV-2
10.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466381

RESUMO

CD4-mimetic HIV-1 entry inhibitors are small sized molecules which imitate similar conformational flexibility, in gp120, to the CD4 receptor. However, the mechanism of the conformational flexibility instigated by these small sized inhibitors is little known. Likewise, the effect of the antibody on the function of these inhibitors is also less studied. In this study, we present a thorough inspection of the mechanism of the conformational flexibility induced by a CD4-mimetic inhibitor, NBD-557, using Molecular Dynamics Simulations and free energy calculations. Our result shows the functional importance of Asn425 in substrate induced conformational dynamics in gp120. The MD simulations of Asn425Gly mutant provide a less dynamic gp120 in the presence of NBD-557 without incapacitating the binding enthalpy of NBD-557. The MD simulations of complexes with the antibody clearly show the enhanced affinity of NBD-557 due to the presence of the antibody, which is in good agreement with experimental Isothermal Titration Calorimetry results (Biochemistry2006, 45, 10973-10980).


Assuntos
Fármacos Anti-HIV/metabolismo , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Simulação de Dinâmica Molecular , Oxalatos/metabolismo , Piperidinas/metabolismo , Fármacos Anti-HIV/química , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Oxalatos/química , Piperidinas/química , Ligação Proteica , Conformação Proteica , Termodinâmica
11.
Nature ; 502(7472): 563-6, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24121441

RESUMO

HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-α at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-α. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.


Assuntos
Infecções por HIV/prevenção & controle , HIV-1/fisiologia , Interferon-alfa/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Divisão Celular , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Células Cultivadas , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Resistência a Myxovirus/genética , Interferência de RNA , Transcrição Reversa , Transcriptoma , Replicação Viral
12.
Ecotoxicol Environ Saf ; 182: 109362, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31254856

RESUMO

In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.


Assuntos
Fluoretos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Adsorção , Ásia/epidemiologia , Água Potável , Recuperação e Remediação Ambiental , Filtração , Fluorose Dentária/epidemiologia , Trato Gastrointestinal/química , Humanos , Índia , Desenvolvimento Industrial , Rim/química , Poluição da Água , Recursos Hídricos
14.
Adv Exp Med Biol ; 1095: 41-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30229548

RESUMO

Chronic inflammation resulting from infections, altered metabolism, inflammatory diseases or other environmental factors can be a major contributor to the development of several types of cancer. In fact around 20% of all cancers are linked to some form of inflammation. Evidence gathered from genetic, epidemiological and molecular pathological studies suggest that inflammation plays a crucial role at various stages of prostatic carcinogenesis and tumor progression. These include initiation, promotion, malignant conversion, invasion, and metastasis. Detailed basic and clinical research in these areas, focused towards understanding the etiology of prostatic inflammation, as well as the exact roles that various signaling pathways play in promoting tumor growth, is critical for understanding this complex process. The information gained would be useful in developing novel therapeutic strategies such as molecular targeting of inflammatory mediators and immunotherapy-based approaches.


Assuntos
Inflamação/fisiopatologia , Neoplasias da Próstata/fisiopatologia , Carcinogênese , Transformação Celular Neoplásica , Humanos , Masculino
15.
Proc Natl Acad Sci U S A ; 111(6): 2301-6, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24474804

RESUMO

Cellular homeostasis is an outcome of complex interacting processes with nonlinear feedbacks that can span distinct spatial and temporal dimensions. Skin tanning is one such dynamic response that maintains genome integrity of epidermal cells. Although pathways underlying hyperpigmentation cascade are recognized, negative feedback regulatory loops that can dampen the activated melanogenesis process are not completely understood. In this study, we delineate a regulatory role of IFN-γ in skin pigmentation biology. We show that IFN-γ signaling impedes maturation of the key organelle melanosome by concerted regulation of several pigmentation genes. Withdrawal of IFN-γ signal spontaneously restores normal cellular programming. This effect in melanocytes is mediated by IFN regulatory factor-1 and is not dependent on the central regulator microphthalmia-associated transcription factor. Chronic IFN-γ signaling shows a clear hypopigmentation phenotype in both mouse and human skin. Interestingly, IFN-γ KO mice display a delayed recovery response to restore basal state of epidermal pigmentation after UV-induced tanning. Together, our studies delineate a new spatiotemporal role of the IFN-γ signaling network in skin pigmentation homeostasis, which could have implications in various cutaneous depigmentary and malignant disorders.


Assuntos
Interferon gama/metabolismo , Melanócitos/citologia , Melanossomas/metabolismo , Transdução de Sinais , Pigmentação da Pele , Animais , Linhagem Celular Tumoral , Melanossomas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Transcrição Gênica
16.
BJU Int ; 114(2): 168-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24215139

RESUMO

Inflammation is involved in regulation of cellular events in prostate carcinogenesis through control of the tumour micro-environment. A variety of bone marrow-derived cells, including CD4+ lymphocytes, macrophages and myeloid-derived suppressor cells, are integral components of the tumour micro-environment. On activation by inflammatory cytokines, NF-κB complexes are capable of promoting tumour cell survival through anti-apoptotic signalling in prostate cancer (PCa). Positive feedback loops are able to maintain NF-κB activation. NF-κB activation is also associated with the metastatic phenotype and PCa progression to castration-resistant prostate cancer (CRPC). A novel role for inhibitor of NF-κB kinase (IKK)-α in NF-κB-independent PCa progression to metastasis and CRPC has recently been uncovered, providing a new mechanistic link between inflammation and PCa. Expansion of PCa progenitors by IKK-α may be involved in this process. In this review, we offer the latest evidence regarding the role of the NF-κB pathway in PCa and discuss therapeutic attempts to target the NF-κB pathways. We point out the need to further dissect inflammatory pathways in PCa in order to develop appropriate preventive measures and design novel therapeutic strategies.


Assuntos
NF-kappa B/fisiologia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Transdução de Sinais/fisiologia , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Humanos , Inflamação/etiologia , Inflamação/patologia , Masculino , Terapia de Alvo Molecular , NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico
17.
Chem Sci ; 15(14): 5174-5186, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577361

RESUMO

Recent bioengineering of CYP450OleT shows that peroxide-based CYP450OleT can be converted to a reductase-based self-sufficient enzyme, which is capable of showing efficient hydroxylation and decarboxylation activity for a wide range of substrates. The so-generated enzyme creates several mechanistic puzzles: (A) as CYP450 peroxygenases lack the conventional acid-alcohol pair, what is the source of two protons that are required to create the ultimate oxidant Cpd I? (B) Why is it only CYP450OleT that shows the reductase-based activity but no other CYP members? The present study provides a mechanistic solution to these puzzles using comprehensive MD simulations and hybrid QM/MM calculations. We show that the fusion of the reductase domain to the heme-binding domain triggers significant conformational rearrangement, which is gated by the propionate side chain, which constitutes a new water aqueduct via the carboxylate end of the substrate that ultimately participates in Cpd I formation. Importantly, such well-synchronized choreographies are controlled by remotely located Tyr359, which senses the fusion of reductase and communicates to the heme domain via non-covalent interactions. These findings provide crucial insights and a broader perspective which enables us to make a verifiable prediction: thus, the catalytic activity is not only limited to the first or second catalytic shell of an enzyme. Furthermore, it is predicted that reinstatement of tyrosine at a similar position in other members of CYP450 peroxygenases can convert these enzymes to reductase-based monooxygenases.

18.
Cancer Immunol Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768394

RESUMO

Immune checkpoint therapies (ICTs) can induce life-threatening immune-related adverse events, including myocarditis and myositis, which are rare but often concurrent. The molecular pathways and immune subsets underlying these toxicities remain poorly understood. To address this need, we obtained heart and skeletal muscle biopsies for single-cell RNA sequencing in living patients with cancers treated with ICTs admitted to the hospital with myocarditis and/or myositis (overlapping myocarditis plus myositis, n=10; myocarditis-only, n=1) compared to ICT-exposed patients ruled out for toxicity utilized as controls (n=9) within 96 hours of clinical presentation. Analyses of 58,523 cells revealed CD8+ T cells with a cytotoxic phenotype expressing activation/exhaustion markers in both myocarditis and myositis. Furthermore, the analyses identified a population of myeloid cells expressing tissue-resident signatures and FcγRIIIa (CD16a), which is known to bind IgG and regulate complement activation. Immunohistochemistry of affected cardiac and skeletal muscle tissues revealed protein expression of pan-IgG and complement product C4d that were associated with the presence of high-titer serum autoantibodies against muscle antigens in a subset of patients. We further identified a population of inflammatory IL-1B+TNF+ myeloid cells specifically enriched in myocarditis and associated with greater toxicity severity and poorer clinical outcomes. These results are the first to recognize these myeloid subsets in human immune-related myocarditis and myositis tissues and nominate new targets for investigation into rational treatments to overcome these high-mortality toxicities.

19.
Clin Cancer Res ; 30(13): 2751-2763, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683200

RESUMO

PURPOSE: To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers. PATIENTS AND METHODS: In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone, and apalutamide (AAPA; module 1) and then allocated to modules 2 or 3 based on satisfactory (≥50% PSA decline from baseline and <5 circulating tumor cell/7.5 mL) versus unsatisfactory status. Men in the former were randomly assigned to continue AAPA alone (module 2A) or with ipilimumab (module 2B). Men in the latter group had carboplatin + cabazitaxel added to AAPA (module 3). Optional baseline biopsies were subjected to correlative studies. RESULTS: Median overall survival (from allocation) was 46.4 [95% confidence interval (CI), 39.2-68.2], 41.4 (95% CI, 33.3-49.9), and 18.7 (95% CI, 14.3-26.3) months in modules 2A (n = 64), 2B (n = 64), and 3 (n = 59), respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pretreatment metastatic biopsies. The aggressive-variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with unsatisfactory status. Exploratory analyses suggested that secreted phosphoprotein 1-positive and insulin-like growth factor-binding protein 2-positive macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the unsatisfactory group. CONCLUSIONS: Adding ipilimumab to AAPA did not improve outcomes in men with androgen-responsive metastatic castration-resistant prostate cancer. Despite the addition of carboplatin + cabazitaxel, men in the unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.


Assuntos
Acetato de Abiraterona , Protocolos de Quimioterapia Combinada Antineoplásica , Prednisona , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Acetato de Abiraterona/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Tioidantoínas/administração & dosagem , Tioidantoínas/uso terapêutico , Tioidantoínas/efeitos adversos , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Ipilimumab/administração & dosagem , Ipilimumab/uso terapêutico , Taxoides
20.
J Phys Chem B ; 127(13): 2927-2933, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959730

RESUMO

Cytochrome P450OleT (CYP450OleT), a member of CYP450 peroxygenases, catalyzes unusual decarboxylation activity. Unlike other members of the peroxygenases family, CYP450OleT possesses a histidine at the 85th position, which was supposed to be the root cause of the decarboxylation activity in CYP450OleT. This work addresses the His85 → Gln mutant paradox, where mutation of His → Gln still shows efficient decarboxylation activity in CYP450OleT. The MD simulation of the H85Q mutant of CYP450OleT shows that in the absence of the histidine at the 85th position, an Asp239 plays a similar role via a well-organized water channel. Our simulation shows that such a water channel is vital for the optimal substrate positioning needed for the decarboxylation activity and is gated by the Q85-N242 residue pair. Interestingly, the MD simulation of the WT CYP450BSß shows a closed channel that blocks access to the Glu236 (analogous residue to Asp239 in CYP450OleT), and therefore, CYP450BSß shows low decarboxylation activity.


Assuntos
Sistema Enzimático do Citocromo P-450 , Histidina , Histidina/genética , Descarboxilação , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA