Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Angiogenesis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922557

RESUMO

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

2.
Angiogenesis ; 26(3): 409-421, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36943533

RESUMO

Hyperglycemia in early postnatal life of preterm infants with incompletely vascularized retinas is associated with increased risk of potentially blinding neovascular retinopathy of prematurity (ROP). Neovascular ROP (Phase II ROP) is a compensatory but ultimately pathological response to the suppression of physiological postnatal retinal vascular development (Phase I ROP). Hyperglycemia in neonatal mice which suppresses physiological retinal vascular growth is associated with decreased expression of systemic and retinal fibroblast growth factor 21 (FGF21). FGF21 administration promoted and FGF21 deficiency suppressed the physiological retinal vessel growth. FGF21 increased serum adiponectin (APN) levels and loss of APN abolished FGF21 promotion of physiological retinal vascular development. Blocking mitochondrial fatty acid oxidation also abolished FGF21 protection against delayed physiological retinal vessel growth. Clinically, preterm infants developing severe neovascular ROP (versus non-severe ROP) had a lower total lipid intake with more parenteral and less enteral during the first 4 weeks of life. Our data suggest that increasing FGF21 levels in the presence of adequate enteral lipids may help prevent Phase I retinopathy (and therefore prevent neovascular disease).


Assuntos
Hiperglicemia , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido Prematuro , Hiperglicemia/complicações , Lipídeos
3.
Sci Rep ; 13(1): 3575, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864106

RESUMO

Pediatric graft-versus-host-disease (GVHD)-related dry eye disease (DED) is often overlooked due to a lack of subjective symptoms and reliable testing, leading to irreversible corneal damage. To study the clinical findings contributing to the accurate detection of pediatric GVHD-related DED, a retrospective study of pediatric patients treated with hematopoietic stem cell transplantation (HSCT) at Keio University Hospital between 2004 and 2017 was conducted. Association and diagnostic values of ophthalmological findings for DED were analyzed. Twenty-six patients who had no ocular complications before HSCT were included in the study. Eleven (42.3%) patients developed new-onset DED. The cotton thread test showed excellent diagnostic accuracy in detecting DED (area under the receiver operating curve, 0.96; sensitivity, 0.95; specificity, 0.85) with a cut-off of 17 mm, which was higher than the conventional threshold of 10 mm. Additionally, the presence of filamentary keratitis (FK) and pseudomembranous conjunctivitis (PC) were significantly associated with the diagnosis of DED (p value, 0.003 and 0.001 for FK and PC, respectively) and displayed good diagnostic performance (sensitivity, 0.46 and 0.54; specificity, 0.97 and 0.97 for FK and PC, respectively). In conclusion, the cotton thread test with a new threshold, the presence of PC and FK, could be helpful for promptly detecting pediatric GVHD-related DED.


Assuntos
Síndrome de Bronquiolite Obliterante , Conjuntivite , Síndromes do Olho Seco , Doença Enxerto-Hospedeiro , Humanos , Criança , Estudos Retrospectivos , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/etiologia , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Olho , Gossypium
4.
PNAS Nexus ; 2(5): pgad148, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37265545

RESUMO

Eye diseases are diagnosed by visualizing often irreversible structural changes occurring late in disease progression, such as retinal ganglion cell loss in glaucoma. The retina and optic nerve head have high mitochondrial energy need. Early mitochondrial/energetics dysfunction may predict vulnerability to permanent structural changes. In the in vivo murine eye, we used light-based resonance Raman spectroscopy (RRS) to assess noninvasively the redox states of mitochondria and hemoglobin which reflect availability of electron donors (fuel) and acceptors (oxygen). As proof of principle, we demonstrated that the mitochondrial redox state at the optic nerve head correlates with later retinal ganglion loss after acute intraocular pressure (IOP) elevation. This technology can potentially map the metabolic health of eye tissue in vivo complementary to optical coherence tomography, defining structural changes. Early detection (and normalization) of mitochondrial dysfunction before irreversible damage could lead to prevention of permanent neural loss.

5.
iScience ; 26(10): 108021, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841591

RESUMO

Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.

6.
Genome Med ; 13(1): 65, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33910608

RESUMO

BACKGROUND: Identification of germline variation and somatic mutations is a major issue in human genetics. However, due to the limitations of DNA sequencing technologies and computational algorithms, our understanding of genetic variation and somatic mutations is far from complete. METHODS: In the present study, we performed whole-genome sequencing using long-read sequencing technology (Oxford Nanopore) for 11 Japanese liver cancers and matched normal samples which were previously sequenced for the International Cancer Genome Consortium (ICGC). We constructed an analysis pipeline for the long-read data and identified germline and somatic structural variations (SVs). RESULTS: In polymorphic germline SVs, our analysis identified 8004 insertions, 6389 deletions, 27 inversions, and 32 intra-chromosomal translocations. By comparing to the chimpanzee genome, we correctly inferred events that caused insertions and deletions and found that most insertions were caused by transposons and Alu is the most predominant source, while other types of insertions, such as tandem duplications and processed pseudogenes, are rare. We inferred mechanisms of deletion generations and found that most non-allelic homolog recombination (NAHR) events were caused by recombination errors in SINEs. Analysis of somatic mutations in liver cancers showed that long reads could detect larger numbers of SVs than a previous short-read study and that mechanisms of cancer SV generation were different from that of germline deletions. CONCLUSIONS: Our analysis provides a comprehensive catalog of polymorphic and somatic SVs, as well as their possible causes. Our software are available at https://github.com/afujimoto/CAMPHOR and https://github.com/afujimoto/CAMPHORsomatic .


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Mutação/genética , Neoplasias/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Metilação de DNA/genética , Mutação em Linhagem Germinativa/genética , Humanos , Mutação INDEL/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA