Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Chem Chem Phys ; 25(15): 10525-10535, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987851

RESUMO

The combination of wide-band gap semiconductors such as zinc oxide (ZnO) and graphene quantum dots (GQDs) is a promising strategy to tune the optoelectronic properties of GQDs and develop new functionalities. Here we report on a theoretical design of not-yet-synthesized hybrid materials composed of ZnO clusters surrounded by carbon moieties, hereinafter referred to as ZnO-embedded graphene quantum dots. Their structure and light absorption properties are presented, with an in-depth analysis of the nature of the photoexcited states. The stability of the (ZnO)nC96-2n system with n = 1, 3, 4, 7, 12 and 27 is investigated by performing vibrational mode analysis and estimating cohesive energy and zinc vacancy formation energy. A strong dependence of the structural and optoelectronic properties of the hybrid material on the amount of ZnO pairs is revealed and discussed. Strong light absorption and unexpected enhancement of Raman modes related to the vibrations in carbon moiety are observed for the highly symmetric (ZnO)27C42 system that makes it an ideal study subject. Complementary excited state analysis, charge density difference (CDD) analysis and interfragment charge transfer analysis present insights deep into the nature of the excited states. An equal contribution of doubly degenerate locally excited states and charge transfer states in broadband light absorption by (ZnO)27C42 is identified. The present results are helpful to elucidate the nature of the fundamental internal mechanisms underlying light absorption in ZnO-embedded graphene quantum dots, thereby providing a scientific background for future experimental study of low-dimensional metal-oxygen-carbon material family.

2.
Nanotechnology ; 30(29): 294002, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30939456

RESUMO

Development of next-generation sensors based on graphene materials, especially epitaxial graphene (EG) as the most promising representative, with desirable cross-reactivity to heavy metals (HMs) is of great technological significance in the virtue of enormous impact on environmental sensorics. Nevertheless, the mechanisms by which EG responds to toxic HMs exposure and then produces the output signal are still obscure. In the present study, the nature of interaction of toxic HMs, e.g. Cd, Hg and Pb in neutral charge state and EG on Si-face SiC in the absence and in the presence of pure water solution has been investigated using density functional theory with the inclusion of dispersion correction and cluster model of EG. The gas-phase calculations showed that adsorbed electron-donating Cd and Hg adatoms on EG are most stable when bonded to hollow sites, while Pb species prefer to sit above bridge sites. By using non-covalent interaction analysis, charge decomposition analysis, overlap population density of states analysis and topological analysis, it was found that the interaction between Cd or Hg and EG is non-bonding in nature and is mainly governed by van der Waals forces, while Pb adsorption is followed by the formation of anti-bonding orbitals in vacuum conditions and bonding orbitals in water. The role of solvent in the adsorption behavior of HMs is studied and discussed. The present theoretical analysis is in good agreement with recent experimental results towards discriminative electrochemical analysis of the toxic HMs in aqueous solutions at critically low concentrations.

3.
Nanotechnology ; 30(28): 285701, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30901765

RESUMO

The photoemission electron microscopy and x-ray photoemission spectroscopy were utilized for the study of anodized epitaxial graphene (EG) on silicon carbide as a fundamental aspect of the oxygen evolution reaction on graphitic materials. The high-resolution analysis of surface morphology and composition quantified the material transformation during the anodization. We investigated the surface with lateral resolution <150 nm, revealing significant transformations on the EG and the role of multilayer edges in increasing the film capacitance.

4.
Sensors (Basel) ; 19(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130608

RESUMO

In this work, we investigated the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb and Cd), showing fast and stable response and low detection limit. The sensing platform proposed includes 3D-printed microfluidic devices, which incorporate all features required to connect and execute lab-on-chip (LOC) functions. The obtained results indicate that EG exhibits excellent sensing activity towards Pb and Cd ions. Several concentrations of Pb2+ solutions, ranging from 125 nM to 500 µM, were analyzed showing Langmuir correlation between signal and Pb2+ concentrations, good stability, and reproducibility over time. Upon the simultaneous presence of both metals, sensor response is dominated by Pb2+ rather than Cd2+ ions. To explain the sensing mechanisms and difference in adsorption behavior of Pb2+ and Cd2+ ions on EG in water-based solutions, we performed van-der-Waals (vdW)-corrected density functional theory (DFT) calculations and non-covalent interaction (NCI) analysis, extended charge decomposition analysis (ECDA), and topological analysis. We demonstrated that Pb2+ and Cd2+ ions act as electron-acceptors, enhancing hole conductivity of EG, due to charge transfer from graphene to metal ions, and Pb2+ ions have preferential ability to binding with graphene over cadmium. Electrochemical measurements confirmed the conductometric results, which additionally indicate that EG is more sensitive to lead than to cadmium.

5.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813225

RESUMO

Gases, such as nitrogen dioxide, formaldehyde and benzene, are toxic even at very low concentrations. However, so far there are no low-cost sensors available with sufficiently low detection limits and desired response times, which are able to detect them in the ranges relevant for air quality control. In this work, we address both, detection of small gas amounts and fast response times, using epitaxially grown graphene decorated with iron oxide nanoparticles. This hybrid surface is used as a sensing layer to detect formaldehyde and benzene at concentrations of relevance (low parts per billion). The performance enhancement was additionally validated using density functional theory calculations to see the effect of decoration on binding energies between the gas molecules and the sensor surface. Moreover, the time constants can be drastically reduced using a derivative sensor signal readout, allowing the sensor to work at detection limits and sampling rates desired for air quality monitoring applications.

6.
Sensors (Basel) ; 19(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813421

RESUMO

Graphene in its pristine form has demonstrated a gas detection ability in an inert carrier gas. For practical use in ambient atmosphere, its sensor properties should be enhanced with functionalisation by defects and dopants, or by decoration with nanophases of metals or/and metal oxides. Excellent sensor behaviour was found for two types of single layer graphenes: grown by chemical vapour deposition (CVD) and transferred onto oxidized silicon (Si/SiO2/CVDG), and the epitaxial graphene grown on SiC (SiC/EG). Both graphene samples were functionalised using a pulsed laser deposited (PLD) thin V2O5 layer of average thickness ≈ 0.6 nm. According to the Raman spectra, the SiC/EG has a remarkable resistance against structural damage under the laser deposition conditions. By contrast, the PLD process readily induces defects in CVD graphene. Both sensors showed remarkable and selective sensing of NH3 gas in terms of response amplitude and speed, as well as recovery rate. SiC/EG showed a response that was an order of magnitude larger as compared to similarly functionalised CVDG sensor (295% vs. 31% for 100 ppm NH3). The adsorption site properties are assigned to deposited V2O5 nanophase, being similar for both sensors, rather than (defect) graphene itself. The substantially larger response of SiC/EG sensor is probably the result of the smaller initial free charge carrier doping in EG.

7.
Nano Lett ; 18(9): 5862-5866, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30136852

RESUMO

The stacking order of multilayer graphene significantly influences its electronic properties. The rhombohedral stacking sequence is predicted to introduce a flat band, which has high density of states and the enhanced Coulomb interaction between charge carriers, thus possibly resulting in superconductivity, fractional quantum Hall effect, and many other exotic phases of matter. In this work, we comprehensively study the effect of the stacking sequence and interlayer spacing on the electronic structure of four-layer graphene, which was grown on a high crystalline quality 3C-SiC(111) crystal. The number of graphene layers and coverage were determined by low energy electron microscopy. First-principles density functional theory calculations show distinctively different band structures for ABAB (Bernal), ABCA (rhombohedral), and ABCB (turbostratic) stacking sequences. By comparing with angle-resolved photoelectron spectroscopy data, we can verify the existence of a rhombohedral stacking sequence and a nearly dispersionless electronic band (flat band) near the Fermi level. Moreover, we find that the momentum width, bandgap, and curvature of the flat-band region can be tuned by the interlayer spacing, which plays an important role in superconductivity and many other exotic phases of matter.

8.
Phys Chem Chem Phys ; 20(33): 21528-21543, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30094428

RESUMO

High-performance optical detection of toxic heavy metals by using graphene quantum dots (GQDs) requires a strong interaction between the metals and GQDs, which can be reached through a functionalization/immobilization procedure or doping effect. However, commonly used surface activation approaches induce toxicity into the analysis system and, therefore, are ineligible from the environmental point of view. Here, we show that artificial creation of vacancy-type defects in GQDs can be a helpful means of intentional control of the active sites available for reaction with cadmium (Cd), mercury (Hg) and lead (Pb). Using restricted density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, we predict the effect of vacancy complexes not previously studied to describe the binding ability of GQDs towards metal adsorbates. We also show that the interband absorption in closed-shell GQDs complexed with Cd, Hg and Pb is strongly dependent on the vacancy type and can be efficiently tuned to attain the desired coloration of the analysis system. The results suggest that the vacancy defects play an important role in governing the hybridization between locally-excited (LE) and charge-transfer (CT) states of the GQDs. Based on the molecular orbital analysis and in-depth knowledge of excited states, the mechanisms underlying the interband absorption are discussed.

9.
Phys Chem Chem Phys ; 20(25): 17105-17116, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29896595

RESUMO

Here, we report the electrochemical deposition of lead (Pb) as a model metal on epitaxial graphene fabricated on silicon carbide (Gr/SiC). The kinetics of electrodeposition and morphological characteristics of the deposits were evaluated by complementary electrochemical, physical and computational methods. The use of Gr/SiC as an electrode allowed the tracking of lead-associated redox conversions. The analysis of current transients passed during the deposition revealed an instantaneous nucleation mechanism controlled by convergent mass transport on the nuclei locally randomly distributed on epitaxial graphene. This key observation of the deposit topology was confirmed by low values of the experimentally-estimated apparent diffusion coefficient, Raman spectroscopy and scanning electron microscopy (SEM) studies. First principles calculations showed that the nucleation of Pb clusters on the graphene surface leads to weakening of the interaction strength of the metal-graphene complex, and only spatially separated Pb adatoms adsorbed on bridge and/or edge-plane sites can affect the vibrational properties of graphene. We expect that the lead adatoms can merge in large metallic clusters only at defect sites that reinforce the metal-graphene interactions. Our findings provide valuable insights into both heavy metal ion electrochemical analysis and metal electroplating on graphene interfaces that are important for designing effective detectors of toxic heavy metals.

10.
Phys Chem Chem Phys ; 19(45): 30445-30463, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29114656

RESUMO

Exploring graphene quantum dots (GQDs) is an attractive way to design novel optical and electrochemical sensors for fast and reliable detection of toxic heavy metals (HMs), such as Cd, Hg and Pb. There are two main strategies for achieving this: (i) surface modification of an electrochemical working electrode by nanoscale GQDs and (ii) using a GQD solution electrolyte for optical sensing. Further development of these sensing technologies towards reaching or exceeding the WHO permissible limits implies deep understanding of the interaction between GQDs and HMs in different dielectric media. Solvent is expected to be one of the key factors affecting the binding ability of the GQDs to HMs and their electronic and optical properties. Here we show that the solvent-solute interaction changes the geometrical configuration, stability and absorption spectra of zigzag/armchair-edged GQDs after complexation with neutral and charged HM species. We observe physisorption behavior of Cd and Hg adatoms on the sp2 surface with a solvent-mediated enhancement of the binding energy with increasing solvent polarity. For Pb adatoms, an opposite picture is revealed. We find that the solvent effect also manifests itself in weakening of the chemisorption strength in the HM cation-π system with increasing dielectric constant of the solvent. Thus, a solvent engineering strategy based on control of the dielectric permittivity can be a promising approach to reach the desired binding energy in the HM@GQDs and to provide high sensitivity and selectivity of both optical and electrochemical sensors to toxic HMs we are interested in.

11.
Sensors (Basel) ; 16(2): 223, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861346

RESUMO

The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Óxidos/química , DNA/isolamento & purificação , Dopamina/isolamento & purificação , Glucose/isolamento & purificação , Grafite/química
12.
RSC Adv ; 13(2): 1125-1136, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686926

RESUMO

In light of their unique physicochemical properties two-dimensional metals are of interest in the development of next-generation sustainable sensing and catalytic applications. Here we showcase results of the investigation of the substrate effect on the formation and the catalytic activity of representative 2D gold layers supported by non-graphenized and graphenized SiC substrates. By performing comprehensive density functional theory (DFT) calculations, we revealed the epitaxial alignment of gold monolayer with the underlying SiC substrate, regardless of the presence of zero-layer graphene or epitaxial graphene. This is explained by a strong binding energy (∼4.7 eV) of 2D Au/SiC and a pronounced charge transfer at the interface, which create preconditions for the penetration of the related electric attraction through graphene layers. We then link the changes in catalytic activity of substrate-supported 2D Au layer in hydrogen evolution reaction to the formation of a charge accumulation region above graphenized layers. Gold intercalation beneath zero-layer graphene followed by its transformation to quasi-free-standing epitaxial graphene is found to be an effective approach to tune the interfacial charge transfer and catalytic activity of 2D Au. The sensing potential of substrate-supported 2D Au was also tested through exploring the adsorption behaviour of NH3, NO2 and NO gas molecules. The present results can be helpful for the experimental design of substrate-supported 2D Au layers with targeted catalytic activity and sensing performance.

13.
ACS Omega ; 7(15): 13221-13227, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474826

RESUMO

The climate change due to human activities stimulates the research on new energy resources. Hydrogen has attracted interest as a green carrier of high energy density. The sustainable production of hydrogen is achievable only by water electrolysis based on the hydrogen evolution reaction (HER). Graphitic materials are widely utilized in this technology in the role of conductive catalyst supports. Herein, by performing dynamic and steady-state electrochemical measurements in acidic and alkaline media, we investigated the bidirectional electrocatalysis of the HER and hydrogen oxidation reaction (HOR) on metal- and defect-free epigraphene (EG) grown on 4H silicon carbide (4H-SiC) as a ground level of structural organization of general graphitic materials. The absence of any signal degradation illustrates the high stability of EG. The experimental and theoretical investigations yield the coherent conclusion on the dominant HER pathway following the Volmer-Tafel mechanism. We ascribe the observed reactivity of EG to its interaction with the underlying SiC substrate that induces strain and electronic doping. The computed high activation energy for breaking the O-H bond is linked to the high negative overpotential of the HER. The estimated exchange current of HER/HOR on EG can be used in the evaluation of complex electrocatalytic systems based on graphite as a conducing support.

14.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808065

RESUMO

Novel two-dimensional materials (2DMs) with balanced electrical conductivity and lithium (Li) storage capacity are desirable for next-generation rechargeable batteries as they may serve as high-performance anodes, improving output battery characteristics. Gaining an advanced understanding of the electrochemical behavior of lithium at the electrode surface and the changes in interior structure of 2DM-based electrodes caused by lithiation is a key component in the long-term process of the implementation of new electrodes into to a realistic device. Here, we showcase the advantages of bilayer-patched epitaxial graphene on 4H-SiC (0001) as a possible anode material in lithium-ion batteries. The presence of bilayer graphene patches is beneficial for the overall lithiation process because it results in enhanced quantum capacitance of the electrode and provides extra intercalation paths. By performing cyclic voltammetry and chronoamperometry measurements, we shed light on the redox behavior of lithium at the bilayer-patched epitaxial graphene electrode and find that the early-stage growth of lithium is governed by the instantaneous nucleation mechanism. The results also demonstrate the fast lithium-ion transport (~4.7-5.6 × 10-7 cm2∙s-1) to the bilayer-patched epitaxial graphene electrode. Raman measurements complemented by in-depth statistical analysis and density functional theory calculations enable us to comprehend the lithiation effect on the properties of bilayer-patched epitaxial graphene and ascribe the lithium intercalation-induced Raman G peak splitting to the disparity between graphene layers. The current results are helpful for further advancement of the design of graphene-based electrodes with targeted performance.

15.
ACS Omega ; 6(38): 24739-24751, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604656

RESUMO

Early stages of silver nucleation on a two-dimensional (2D) substrate, here, monolayer epitaxial graphene (MEG) on SiC, play a critical role in the formation of application-specific Ag nanostructures. Therefore, it is of both fundamental and practical importance to investigate the growth steps when Ag adatoms start to form a new phase. In this work, we exploit density functional theory to study the kinetics of early-stage nuclei Ag n (n = 1-9) assembly of Ag nanoparticles on MEG. We find that the Ag1 monomer tends to occupy hollow site positions of MEG and interacts with the surface mainly through weak dispersion forces. The pseudoepitaxial growth regime is revealed to dominate the formation of the planar silver clusters. The adsorption and nucleation energies of Ag n clusters exhibit evident odd-even oscillations with cluster size, pointing out the preferable adsorption and nucleation of odd-numbered clusters on MEG. The character of the interaction between a chemisorbed Ag3 cluster and MEG makes it possible to consider this trimer as the most stable nucleus for the subsequent growth of Ag nanoparticles. We reveal the general correlation between Ag/MEG interaction and Ag-Ag interaction: with increasing cluster size, the interaction between Ag adatoms increases, while the Ag/MEG interaction decreases. The general trend is also supported by the results of charge population analysis, according to which the average charge per Ag adatom in a Ag n cluster demonstrates a drastic decrement with cluster size increase. 2D-3D structural transition in Ag n clusters was investigated. We anticipate that the present investigation is beneficial by providing a better understanding of the early-stage nucleation of Ag nanoparticles on MEG at the atomic scale. Specific interaction between odd-numbered Ag clusters preadsorbed onto the MEG surface and carbon monoxide (CO) as well as clusters' stability at 300 K is discussed in terms of sensing applications.

16.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671677

RESUMO

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta-organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°-3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.

17.
ACS Nano ; 15(3): 5502-5512, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33605135

RESUMO

Cubic silicon carbide (3C-SiC) is a promising photoelectrode material for solar water splitting due to its relatively small band gap (2.36 eV) and its ideal energy band positions that straddle the water redox potentials. However, despite various coupled oxygen-evolution-reaction (OER) cocatalysts, it commonly exhibits a much smaller photocurrent (<∼1 mA cm-2) than the expected value (8 mA cm-2) from its band gap under AM1.5G 100 mW cm-2 illumination. Here, we show that a short carrier diffusion length with respect to the large light penetration depth in 3C-SiC significantly limits the charge separation, thus resulting in a small photocurrent. To overcome this drawback, this work demonstrates a facile anodization method to fabricate nanoporous 3C-SiC photoanodes coupled with Ni:FeOOH cocatalyst that evidently improve the solar water splitting performance. The optimized nanoporous 3C-SiC shows a high photocurrent density of 2.30 mA cm-2 at 1.23 V versus reversible hydrogen electrode (VRHE) under AM1.5G 100 mW cm-2 illumination, which is 3.3 times higher than that of its planar counterpart (0.69 mA cm-2 at 1.23 VRHE). We further demonstrate that the optimized nanoporous photoanode exhibits an enhanced light-harvesting efficiency (LHE) of over 93%, a high charge-separation efficiency (Φsep) of 38%, and a high charge-injection efficiency (Φox) of 91% for water oxidation at 1.23 VRHE, which are significantly outperforming those its planar counterpart (LHE = 78%, Φsep = 28%, and Φox = 53% at 1.23 VRHE). All of these properties of nanoporous 3C-SiC enable a synergetic enhancement of solar water splitting performance. This work also brings insights into the design of other indirect band gap semiconductors for solar energy conversion.

18.
Adv Mater ; 33(1): e2006660, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33225494

RESUMO

The properties of 2D InN are predicted to substantially differ from the bulk crystal. The predicted appealing properties relate to strong in- and out-of-plane excitons, high electron mobility, efficient strain engineering of their electronic and optical properties, and strong application potential in gas sensing. Until now, the realization of 2D InN remained elusive. In this work, the formation of 2D InN and measurements of its bandgap are reported. Bilayer InN is formed between graphene and SiC by an intercalation process in metal-organic chemical vapor deposition (MOCVD). The thickness uniformity of the intercalated structure is investigated by conductive atomic force microscopy (C-AFM) and the structural properties by atomic resolution transmission electron microscopy (TEM). The coverage of the SiC surface is very high, above 90%, and a major part of the intercalated structure is represented by two sub-layers of indium (In) bonded to nitrogen (N). Scanning tunneling spectroscopy (STS) measurements give a bandgap value of 2 ± 0.1 eV for the 2D InN. The stabilization of 2D InN with a pragmatic wide bandgap and high lateral uniformity of intercalation is demonstrated.

19.
Materials (Basel) ; 14(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576572

RESUMO

In this review paper, several new approaches about the 3C-SiC growth are been presented. In fact, despite the long research activity on 3C-SiC, no devices with good electrical characteristics have been obtained due to the high defect density and high level of stress. To overcome these problems, two different approaches have been used in the last years. From one side, several compliance substrates have been used to try to reduce both the defects and stress, while from another side, the first bulk growth has been performed to try to improve the quality of this material with respect to the heteroepitaxial one. From all these studies, a new understanding of the material defects has been obtained, as well as regarding all the interactions between defects and several growth parameters. This new knowledge will be the basis to solve the main issue of the 3C-SiC growth and reach the goal to obtain a material with low defects and low stress that would allow for realizing devices with extremely interesting characteristics.

20.
Colloids Surf B Biointerfaces ; 191: 110999, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32289650

RESUMO

In this research a whispering gallery mode (WGM) resonator based on vertically oriented ZnO nanorods, which were formed on silicon surface (silicon/ZnO-NRs), has been applied in the design of optical immunosensor that was dedicated for the determination of grapevine virus A-type (GVA) proteins. Vertically oriented ZnO-NRs were grown on silicon substrates by atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and the silicon/ZnO-NRs structures formed were characterized by structural and optical methods. Optical characterization demonstrates that silicon/ZnO-NRs-based structures can act as 'whispering gallery mode' (WGM) resonator where quasi-whispering gallery modes (quasi-WGMs) are generated. These quasi-WGMs were experimentally observed in the visible and infrared ranges of the photoluminescence spectra. In order to design an immuno-sensing system the anti-GVA antibodies were immobilized on the surface of silicon/ZnO-NRs and in this way silicon/ZnO-NRs/anti-GVA structure was formed. The immobilization of anti-GVA antibodies and then the interaction of silicon/ZnO-NRs/anti-GVA structure with GVA proteins (GVA-antigens) resulted in an opposite shifts of the WGMs peaks in the visible range of the photoluminescence spectra observed as a defect-related photoluminescence emission of ZnO-NRs. Here designed silicon/ZnO-NRs/anti-GVA immuno-sensing structure demonstrates the sensitivity towards GVA-antigens in the concentration range of 1-200 ng/ml. Bioanalytical applicability of the silicon/ZnO-NRs-based structures in the WGMs registration mode is discussed.


Assuntos
Técnicas Biossensoriais , Flexiviridae/isolamento & purificação , Nanotubos/química , Óxido de Zinco/química , Óptica e Fotônica , Tamanho da Partícula , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA