Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Plant Cell ; 35(8): 2821-2847, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37144857

RESUMO

The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema , Histonas/genética , Histonas/metabolismo , Flores/fisiologia , Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo
2.
Plant Physiol ; 194(4): 1934-1951, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37878744

RESUMO

Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Epigênese Genética , Resposta ao Choque Térmico/genética , Cromatina/genética , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 116(2): 478-496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478313

RESUMO

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.

4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686100

RESUMO

Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS.


Assuntos
Aclimatação , Agricultura , Espécies Reativas de Oxigênio , Autofagia , Resposta ao Choque Térmico/genética
5.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764982

RESUMO

Proper floral patterning, including the number and position of floral organs in most plant species, is tightly controlled by the precise regulation of the persistence and size of floral meristems (FMs). In Arabidopsis, two known feedback pathways, one composed of WUSCHEL (WUS) and CLAVATA3 (CLV3) and the other composed of AGAMOUS (AG) and WUS, spatially and temporally control floral stem cells, respectively. However, mounting evidence suggests that other factors, including phytohormones, are also involved in floral meristem regulation. Here, we show that the boundary gene SUPERMAN (SUP) bridges floral organogenesis and floral meristem determinacy in another pathway that involves auxin signaling. SUP interacts with components of polycomb repressive complex 2 (PRC2) and fine-tunes local auxin signaling by negatively regulating the expression of the auxin biosynthesis genes YUCCA1/4 (YUC1/4). In sup mutants, derepressed local YUC1/4 activity elevates auxin levels at the boundary between whorls 3 and 4, which leads to an increase in the number and the prolonged maintenance of floral stem cells, and consequently an increase in the number of reproductive organs. Our work presents a new floral meristem regulatory mechanism, in which SUP, a boundary gene, coordinates floral organogenesis and floral meristem size through fine-tuning auxin biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Oxigenases de Função Mista/genética , Mutação , Fenótipo , Complexo Repressor Polycomb 2/genética , Células-Tronco/metabolismo
6.
J Exp Bot ; 73(5): 1277-1287, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752611

RESUMO

Gene regulatory networks formed by transcription factors play essential roles in the regulation of gene expression during plant reproductive development. These networks integrate endogenous, phytohormonal, and environmental cues. Molecular genetic, biochemical, and chemical analyses performed mainly in Arabidopsis have identified network hub genes and revealed the contributions of individual components to these networks. Here, I outline current understanding of key epigenetic regulatory circuits identified by research on plant reproduction, and highlight significant recent examples of genetic engineering and chemical applications to modulate the epigenetic regulation of gene expression. Furthermore, I discuss future prospects for applying basic plant science to engineer useful floral traits in a predictable manner as well as the potential side effects.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Flores , Regulação da Expressão Gênica de Plantas , Meristema
7.
Plant Cell ; 31(7): 1488-1505, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068455

RESUMO

Arabidopsis (Arabidopsis thaliana) floral meristems terminate after the carpel primordia arise. This is achieved through the temporal repression of WUSCHEL (WUS), which is essential for stem cell maintenance. At floral stage 6, WUS is repressed by KNUCKLES (KNU), a repressor directly activated by AGAMOUS. KNU was suggested to repress WUS through histone deacetylation; however, how the changes in the chromatin state of WUS are initiated and maintained to terminate the floral meristem remains elusive. Here, we show that KNU integrates initial transcriptional repression with polycomb-mediated stable silencing of WUS After KNU is induced, it binds to the WUS promoter and causes eviction of SPLAYED, which is a known activator of WUS and can oppose polycomb repression. KNU also physically interacts with FERTILIZATION-INDEPENDENT ENDOSPERM, a key polycomb repressive complex2 component, and mediates the subsequent deposition of the repressive histone H3 lysine 27 trimethylation for stable silencing of WUS This multi-step silencing of WUS leads to the termination of floral stem cells, ensuring proper carpel development. Thus, our work describes a detailed mechanism for heritable floral stem cell termination in a precise spatiotemporal manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Cromatina/metabolismo , Epigênese Genética , Epistasia Genética , Proteínas de Homeodomínio/genética , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica
8.
Physiol Mol Biol Plants ; 28(5): 1061-1075, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722514

RESUMO

Water is essential to support life. Because limited water availability may affect their life cycles, plants have developed multiple responses to drought stress. Plant physiological and metabolic changes during drought may reflect changes that occur at the level of gene expression. In this study, we investigated the variation in drought-mitigating strategies employed by pigmented rice (Oryza sativa) varieties and the genes involved in their possible drought tolerance. We screened 21 local pigmented rice cultivars from Indonesia for increased drought tolerance using the fraction transpirable soil water method to exert precise control of the drought stress imposed on plants. We then determined the expression of OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2, and OsCAT3 in plants grown under well-watered conditions and under moderate or severe drought stress. Among the pigmented rice cultivars, Merah Pari Eja had the greatest drought tolerance, while the red rice Inpari 24 had the highest mortality rate (60%). We also included the white rice cultivar Putih Payo, which is fully sensitive to drought (with 100% mortality under the conditions used) as a negative control. Gene expression profiling revealed a general upregulation of drought-related genes in Merah Pari Eja and a downregulation of such genes in the other two cultivars. Measurements of antioxidant enzyme activity, leaf damage, free radicals, chlorophyll, and anthocyanin contents provided further evidence that Merah Pari Eja is more drought tolerant than the other two cultivars. We conclude that OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2 and OsCAT3 expression patterns can reveal plants that have increased drought tolerance.

9.
New Phytol ; 224(2): 749-760, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310684

RESUMO

Lateral root (LR) formation in Arabidopsis thaliana is initiated by asymmetric division of founder cells, followed by coordinated cell proliferation and differentiation for patterning new primordia. The sequential developmental processes of LR formation are triggered by a localized auxin response. LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), an auxin-inducible transcription factor, is one of the key regulators linking auxin response in LR founder cells to LR initiation. We identified key genes for LR formation that are activated by LBD16 in an auxin-dependent manner. LBD16 targets identified include the transcription factor gene PUCHI, which is required for LR primordium patterning. We demonstrate that LBD16 activity is required for the auxin-inducible expression of PUCHI. We show that PUCHI expression is initiated after the first round of asymmetric cell division of LR founder cells and that premature induction of PUCHI during the preinitiation phase disrupts LR primordium formation. Our results indicate that LR initiation requires the sequential induction of transcription factors LBD16 and PUCHI.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética
10.
Plant Cell Environ ; 42(7): 2198-2214, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30859592

RESUMO

After germination, seedlings undergo growth arrest in response to unfavourable conditions, a critical adaptation enabling plants to survive harsh environments. The plant hormone abscisic acid (ABA) plays a key role in this arrest. To arrest growth, ABA-dependent transcription factors change gene expression patterns in a flexible and reversible manner. Although the control of gene expression has important roles in growth arrest, the epigenetic mechanisms in the response to ABA are not fully understood. Here, we show that the histone demethylases JUMONJI-C domain-containing protein 30 (JMJ30) and JMJ32 control ABA-mediated growth arrest in Arabidopsis thaliana. During the postgermination stage (2-3 days after germination), the ABA-dependent transcription factor ABA-insensitive3 (ABI3) activates the expression of JMJ30 in response to ABA. JMJ30 then removes a repressive histone mark, H3 lysine 27 trimethylation (H3K27me3), from the SNF1-related protein kinase 2.8 (SnRK2.8) promoter, and hence activates SnRK2.8 expression. SnRK2.8 encodes a kinase that activates ABI3 and is responsible for JMJ30- and JMJ32-mediated growth arrest. A feed-forward loop involving the ABI3 transcription factor, JMJ histone demethylases, and the SnRK2.8 kinase fine-tunes ABA-dependent growth arrest in the postgermination phase. Our findings highlight the importance of the histone demethylases in mediating adaptation of plants to the environment.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação/fisiologia , Histonas/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desmetilação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Germinação/efeitos dos fármacos , Germinação/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula , Fatores de Transcrição/metabolismo
11.
J Exp Bot ; 70(6): 1711-1718, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916342

RESUMO

Flowers have fascinated humans for millennia, not only because of their beauty, but also because they give rise to fruits, from which most agricultural products are derived. In most angiosperms, the number and position of floral organs are morphologically and genetically defined, and their development is tightly controlled by complex regulatory networks to ensure reproductive success. How flower development is temporally initiated and spatially maintained has been widely researched. As the flower develops, the balance between proliferation and differentiation dynamically shifts towards organogenesis and termination of floral stem cell maintenance. In this review, we focus on recent findings that further reveal the intricate molecular mechanisms for precise timing of floral meristem termination.


Assuntos
Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Organogênese Vegetal
12.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434317

RESUMO

Plants, unlike animals, have developed a unique system in which they continue to form organs throughout their entire life cycle, even after embryonic development. This is possible because plants possess a small group of pluripotent stem cells in their meristems. The shoot apical meristem (SAM) plays a key role in forming all of the aerial structures of plants, including floral meristems (FMs). The FMs subsequently give rise to the floral organs containing reproductive structures. Studies in the past few decades have revealed the importance of transcription factors and secreted peptides in meristem activity using the model plant Arabidopsis thaliana. Recent advances in genomic, transcriptomic, imaging, and modeling technologies have allowed us to explore the interplay between transcription factors, secreted peptides, and plant hormones. Two different classes of plant hormones, cytokinins and auxins, and their interaction are particularly important for controlling SAM and FM development. This review focuses on the current issues surrounding the crosstalk between the hormonal and genetic regulatory network during meristem self-renewal and organogenesis.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Meristema/citologia
13.
Plant Physiol ; 170(1): 283-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537561

RESUMO

Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously, we reported that the plant hormone auxin induces LFY expression through AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP). It is not known whether MP is solely responsible for auxin-directed transcriptional activation of LFY. Here, we show that two transcription factors belonging to the AINTEGUMENTA-LIKE/PLETHORA family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3), act in parallel with MP to upregulate LFY in response to auxin. ant ail6 mutants display a delay in the meristem identity transition and in LFY induction. ANT and AIL6/PLT3 are expressed prior to LFY and bind to the LFY promoter to control LFY mRNA accumulation. Genetic and promoter/reporter studies suggest that ANT/AIL6 act in parallel with MP to promote LFY induction in response to auxin sensing. Our study highlights the importance of two separate auxin-controlled pathways in the meristem identity transition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flores/fisiologia , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação , Plantas Geneticamente Modificadas , Elementos de Resposta , Fatores de Transcrição/genética
14.
Physiol Plant ; 155(1): 55-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26096587

RESUMO

Two key regulators of the switch to flower formation and of flower patterning in Arabidopsis are the plant-specific helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1). The interactions between these two transcriptional regulators are complex. AP1 is both a direct target of LFY and can act in parallel with LFY. Available genetic and molecular evidence suggests that LFY and AP1 together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional programs. However, very little is known about target genes regulated by both transcription factors. Here, we performed a meta-analysis of public datasets to identify genes that are likely to be regulated by both LFY and AP1. Our analyses uncovered known and novel direct LFY and AP1 targets with a role in the control of onset of flower formation. It also identified additional families of proteins and regulatory pathways that may be under transcriptional control by both transcription factors. In particular, several of these genes are linked to response to hormones, to transport and to development. Finally, we show that the gibberellin catabolism enzyme ELA1, which was recently shown to be important for the timing of the switch to flower formation, is positively feedback-regulated by AP1. Our study contributes to the elucidation of the regulatory network that leads to formation of a vital plant organ system, the flower.


Assuntos
Proteínas de Arabidopsis/genética , Flores/genética , Perfilação da Expressão Gênica , Proteínas de Domínio MADS/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Hibridização In Situ , Proteínas de Domínio MADS/metabolismo , Morfogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(9): 3576-81, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22323601

RESUMO

Patterning of the floral organs is exquisitely controlled and executed by four classes of homeotic regulators. Among these, the class B and class C floral homeotic regulators are of central importance as they specify the male and female reproductive organs. Inappropriate induction of the class B gene APETALA3 (AP3) and the class C gene AGAMOUS (AG) causes reduced reproductive fitness and is prevented by polycomb repression. At the onset of flower patterning, polycomb repression needs to be overcome to allow induction of AP3 and AG and formation of the reproductive organs. We show that the SWI2/SNF2 chromatin-remodeling ATPases SPLAYED (SYD) and BRAHMA (BRM) are redundantly required for flower patterning and for the activation of AP3 and AG. The SWI2/SNF2 ATPases are recruited to the regulatory regions of AP3 and AG during flower development and physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3). SYD and LFY association with the AP3 and AG regulatory loci peaks at the same time during flower patterning, and SYD binding to these loci is compromised in lfy and lfy sep3 mutants. This suggests a mechanism for SWI2/SNF2 ATPase recruitment to these loci at the right stage and in the correct cells. SYD and BRM act as trithorax proteins, and the requirement for SYD and BRM in flower patterning can be overcome by partial loss of polycomb activity in curly leaf (clf) mutants, implicating the SWI2/SNF2 chromatin remodelers in reversal of polycomb repression.


Assuntos
Proteína AGAMOUS de Arabidopsis/biossíntese , Adenosina Trifosfatases/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Domínio MADS/biossíntese , Proteínas Repressoras/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Flores/ultraestrutura , Proteínas de Domínio MADS/genética , Proteínas do Grupo Polycomb , Mapeamento de Interação de Proteínas , Transcrição Gênica
16.
Development ; 138(15): 3189-98, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750030

RESUMO

The switch from producing vegetative structures (branches and leaves) to producing reproductive structures (flowers) is a crucial developmental transition that significantly affects the reproductive success of flowering plants. In Arabidopsis, this transition is in large part controlled by the meristem identity regulator LEAFY (LFY). The molecular mechanisms by which LFY orchestrates a precise and robust switch to flower formation is not well understood. Here, we show that the direct LFY target LATE MERISTEM IDENTITY2 (LMI2) has a role in the meristem identity transition. Like LFY, LMI2 activates AP1 directly; moreover, LMI2 and LFY interact physically. LFY, LMI2 and AP1 are connected in a feed-forward and positive feedback loop network. We propose that these intricate regulatory interactions not only direct the precision of this crucial developmental transition in rapidly changing environmental conditions, but also contribute to its robustness and irreversibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retroalimentação Fisiológica , Proteínas de Domínio MADS/genética , Meristema/fisiologia , Transdução de Sinais/fisiologia , Transativadores/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
17.
Curr Opin Plant Biol ; 81: 102569, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833828

RESUMO

Epigenetic modifications are inheritable, reversible changes that control gene expression without altering the DNA sequence itself. Recent advances in epigenetic and sequencing technologies have revealed key regulatory regions in genes with multiple epigenetic changes. However, causal associations between epigenetic changes and physiological events have rarely been examined. Epigenome editing enables alterations to the epigenome without changing the underlying DNA sequence. Modifying epigenetic information in plants has important implications for causality assessment of the epigenome. Here, we briefly review tools for selectively interrogating the epigenome. We highlight promising research on site-specific DNA methylation and histone modifications and propose future research directions to more deeply investigate epigenetic regulation, including cause-and-effect relationships between epigenetic modifications and the development/environmental responses of Arabidopsis thaliana.

18.
Annu Rev Plant Biol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38382906

RESUMO

Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene-environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

19.
Nat Commun ; 15(1): 1098, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321030

RESUMO

In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.


Assuntos
Arabidopsis , Ciclopentanos , Oxilipinas , Arabidopsis/genética , Flores/genética , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant J ; 69(5): 844-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22050454

RESUMO

Pedicel length and orientation (angle) contribute to the diversity of inflorescence architecture, and are important for optimal positioning of the flowers. However, relatively little is known about pedicel development. We previously described the Arabidopsis CORYMBOSA1 (CRM1)/BIG gene, which affects inflorescence architecture by controlling pedicel elongation and orientation. Here, we performed a suppressor screen using the partial loss-of-function allele crm1-13 to identify genes and pathways that affect pedicel development. We identified a hypomorph allele of the meristem identity regulator LEAFY (LFY) as the suppressor. Consistent with this, crm1 pedicels had elevated LFY levels and conditional gain of LFY function produced downward-bending pedicels. Steroid activation of 35S:LFY-GR plants caused a reduction in the cortical cell length in the abaxial domain and additional defects associated with adaxialization. Further analyses of loss of LFY function revealed that LFY is required for reduced cortical cell elongation at the adaxial side of the pedicel base. Defects in conditional LFY gain-of-function pedicels were correlated with decreased BREVIPEDICELLUS (BP) expression, while ASYMMETRIC LEAVES2 (AS2), a transcriptional repressor of BP, and REVOLUTA, a promoter of adaxial cell fate, were highly and ectopically expressed in LFY gain-of-function pedicels. LFY bound to cis-regulatory regions upstream of AS2, and as2 mutations partially suppressed the pedicel length and orientation defects caused by increased LFY activity. These data suggest that LFY activity promotes adaxial cell fate and hence the proper orientation and length of the pedicel partly by directly activating AS2 expression, which suppresses BP expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta/citologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA