Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639600

RESUMO

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Assuntos
Oryza , Oryza/genética , Citocininas/genética , Nucleosídeos de Purina , N-Glicosil Hidrolases/genética , Nucleosídeos , Parede Celular/genética
2.
Surg Today ; 53(8): 949-956, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36790474

RESUMO

PURPOSE: We determined the usefulness of the estimation of physiologic ability and surgical stress (E-PASS), initially reported as a predictive factor for postoperative morbidity and mortality, as a prognostic indicator in stage II colorectal cancer (CRC). METHODS: Overall, 739 patients who underwent proctocolectomy for CRC at Tottori University Hospital and affiliated hospitals and histologically diagnosed with stage II CRC were included in the current study. RESULTS: A receiver operating characteristic (ROC) analysis of the five-year recurrence-free survival indicated that the comprehensive risk score (CRS) of E-PASS predicted postoperative recurrence. A multivariate analysis revealed that the presence of preoperative perforation, T4, v ≥ 2, and CRSHigh (≥ 0.2267) were independent predictors of postoperative recurrence. Patients were assigned a score using these factors, as follows: the presence of perforation = 1, the absence of preoperative perforation = 0, T4 = 1, T3 = 0, v2/3 = 1, v0/1 = 0, CRSHigh = 1, and CRSLow = 0 (total score: 0-4). Accordingly, the respective 5-year relapse-free survival rates were 91.0%, 83.6%, 70.3%, and 52.0% among those with scores of 0, 1, 2, and both 3 and 4 (P < 0.001). CONCLUSIONS: The CRS predicts postoperative recurrence in patients with stage II CRC.


Assuntos
Neoplasias Colorretais , Complicações Pós-Operatórias , Humanos , Complicações Pós-Operatórias/epidemiologia , Recidiva Local de Neoplasia/epidemiologia , Fatores de Risco , Prognóstico , Neoplasias Colorretais/cirurgia , Estudos Retrospectivos
3.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840983

RESUMO

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

4.
BMC Cancer ; 22(1): 390, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410196

RESUMO

BACKGROUND: Adjuvant chemotherapy for stage II colorectal cancer (CRC) is considered appropriate for patients with risk factors for recurrence, rather than for all patients uniformly. However, the risk factors for recurrence remain controversial, and there is limited information, especially for elderly patients. The Geriatric Nutritional Risk Index (GNRI) is widely used as a simple nutritional screening tool in the elderly and is associated with cancer prognosis and recurrence. This study aimed to investigate the risk factors for recurrence in the elderly with stage II CRC, focusing on the GNRI. METHODS: We enrolled 348 elderly patients (≥ 75 years) with stage II CRC who underwent curative resection at the Department of Surgery, Tottori University and our 10 affiliated institutions. The patients were divided into GNRIhigh (≥ 93.465) and GNRIlow (< 93.465) groups. RESULTS: The GNRIlow group showed a significantly worse overall survival (OS), cancer-specific survival (CSS), and relapse-free survival (RFS) (P < 0.001, P < 0.001, and P < 0.001, respectively). In a multivariate analysis, GNRIlow (hazard ratio [HR]: 2.244, P < 0.001), pathologic T4 stage (HR: 1.658, P = 0.014), and moderate to severe lymphatic or venous invasion (HR: 1.460, P = 0.033) were independent factors affecting RFS. By using these three factors to score the risk of recurrence from 0 to 3 points, the prognosis was significantly stratified in terms of OS, CSS, and RFS (P < 0.001, P < 0.001, and P < 0.001, respectively). The recurrence rate for each score was as follows: 0 points, 9.8%; 1 point, 22.0%; 2 points, 37.3%; and 3 points, 61.9%. CONCLUSIONS: GNRIlow, pathologic T4 stage, and moderate to severe lymphatic or venous invasion are high-risk factors for recurrence in the elderly with stage II CRC. The scoring system using these three factors appropriately predicted their recurrence and outcome.


Assuntos
Neoplasias Colorretais , Avaliação Nutricional , Idoso , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/cirurgia , Avaliação Geriátrica , Humanos , Recidiva Local de Neoplasia/epidemiologia , Estado Nutricional , Prognóstico , Estudos Retrospectivos , Fatores de Risco
5.
J Exp Bot ; 70(19): 5131-5144, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257428

RESUMO

The improvement of leaf net photosynthetic rate (An) is a major challenge in enhancing crop productivity. However, the genetic control of An among natural genetic accessions is still poorly understood. The high-yielding indica cultivar Takanari has the highest An of all rice cultivars, 20-30% higher than that of the high-quality japonica cultivar Koshihikari. By using reciprocal backcross inbred lines and chromosome segment substitution lines derived from a cross between Takanari and Koshihikari, we identified three quantitative trait loci (QTLs) where the Takanari alleles enhanced An in plants with a Koshihikari genetic background and five QTLs where the Koshihikari alleles enhanced An in plants with a Takanari genetic background. Two QTLs were expressed in plants with both backgrounds (type I QTL). The expression of other QTLs depended strongly on genetic background (type II QTL). These beneficial alleles increased stomatal conductance, the initial slope of An versus intercellular CO2 concentration, or An at CO2 saturation. Pyramiding of these alleles consistently increased An. Some alleles positively affected biomass production and grain yield. These alleles associated with photosynthesis and yield can be a valuable tool in rice breeding programs via DNA marker-assisted selection.


Assuntos
Oryza/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Oryza/metabolismo
6.
Breed Sci ; 69(4): 633-639, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31988627

RESUMO

Direct seeding saves time and labour in the cultivation of rice. However, seedling establishment is often unstable, and yields are lower than in transplanting. Anaerobic germination (AG) is a key trait for improvement of direct seeding of rice. We established a simple and reliable method of evaluating AG in rice breeding. We germinated seeds in distilled water or deoxygenated water and measured coleoptile length several days later; compared the results of each method with survival rate in flooded soil; and used the anoxic water method for QTL analysis and for testing cultivars. Coleoptile elongation in anoxic water and survival rate in flooded soil were significantly correlated (r = 0.879, P < 0.01). A significant QTL, likely to be a major gene (AG1), was found in chromosome segment substitution lines and in a backcrossed F2 population derived from tolerant and sensitive lines. Diverse rice genetic resources were classified into tolerant or sensitive accession groups reflecting their ecotypes. Our study revealed that anoxic water evaluation method saves space and time in a stable environment compared with flooded soil evaluation. It is applicable to QTL analysis and isolation of genes underlying anaerobic germination.

7.
Breed Sci ; 68(3): 305-315, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30100797

RESUMO

Canopy temperature can be a good indicator of stomatal conductance. To understand the genetic basis of phenotypic differences in stomatal conductance between average and high-yielding rice (Oryza sativa L.) cultivars, we conducted a quantitative trait locus (QTL) analysis of canopy temperature. We developed reciprocal series of backcross inbred lines (BC1F6) derived from a cross between the average-yielding japonica cultivar 'Koshihikari' and the high-yielding indica cultivar 'Takanari'. A stable QTL, qCTd11 (QTL for canopy temperature difference on chromosome 11) on the short arm of chromosome 11, accounted for 10.4 and 19.8% of the total phenotypic variance in the two lines; the 'Takanari' allele decreased the canopy temperature difference value. A chromosome segment substitution line carrying the Takanari qCTd11 showed a greater reduction in canopy temperature than 'Koshihikari', and had higher stomatal conductance and photosynthetic rate. These results suggest that qCTd11 is not only involved in canopy temperature, but is also involved in both stomatal conductance and photosynthetic rate.

8.
Breed Sci ; 67(5): 427-434, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398936

RESUMO

Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars.

9.
Theor Appl Genet ; 129(3): 631-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747044

RESUMO

KEY MESSAGE: A QTL for cold tolerance at the booting stage of rice cultivar 'Kuchum' was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, 'Hitomebore', has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even 'Hitomebore' exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, 'Kuchum', were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having 'Kuchum' alleles around qCT-4 with a 'Hitomebore' genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous 'Kuchum' alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of 'Hitomebore' having 'Silewah' alleles of Ctb1 and Ctb2 and a 'Hokkai PL9' allele of qCTB8 did not exhibit higher cold tolerance than that of 'Hitomebore'. On the other hand, a qLTB3 allele derived from a Chinese cultivar 'Lijiangxintuanheigu' increased cold tolerance of 'Hitomebore', and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of 'Hitomebore' with the 'Kuchum' allele of qCT-4 were highly similar to 'Hitomebore' in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.


Assuntos
Cruzamento , Temperatura Baixa , Oryza/genética , Locos de Características Quantitativas , Adaptação Fisiológica/genética , Alelos , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo
10.
Artigo em Inglês | MEDLINE | ID: mdl-26850473

RESUMO

Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure.


Assuntos
Apoptose , Carpa Dourada/metabolismo , Modelos Animais , Osteoclastos/metabolismo , Ultrassom , Animais , Osteoclastos/citologia
11.
BMC Plant Biol ; 15: 115, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953146

RESUMO

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Assuntos
Ecótipo , Flores/genética , Flores/fisiologia , Oryza/genética , Oryza/fisiologia , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Modelos Genéticos , Fotoperíodo , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
12.
Mol Genet Genomics ; 290(3): 1085-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25532750

RESUMO

Brown spots on mature leaves from the heading to ripening stages in rice are considered to be lesions induced by heat stress. However, there are few studies of lesions that are induced by heat stress rather than by pathogen infections. To understand the genetic background underlying such lesions, we used the chromosome segment substitution line (CSSL) SL518, derived from a distant cross between rice cultivars Koshihikari (japonica) and Nona Bokra (indica). We observed brown spots on mature leaf blades of the CSSL, although the parents barely showed any spots. Spot formation in SL518 was accelerated by high temperature, suggesting that the candidate gene for spot formation is related to heat stress response. Using progeny derived from a cross between SL518 and Koshihikari, we mapped the causative gene, BROWN-SPOTTED LEAF 1 (BSPL1), on chromosome 5. We speculated that one or more Nona Bokra genes suppress spot formation caused by BSPL1 and identified candidate genomic regions on chromosomes 2 and 9 using a cross between a near-isogenic line for BSPL1 and other CSSLs possessing Nona Bokra segments in the Koshihikari genetic background. In conclusion, our data support the concept that multiple genes are complementarily involved in brown spot formation induced by heat stress and will be useful for cloning of the novel gene(s) related to the spot formation.


Assuntos
Cromossomos de Plantas/genética , Genes Supressores/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas/genética , Temperatura Alta , Oryza/imunologia , Oryza/microbiologia , Oryza/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Xanthomonas/fisiologia
13.
J Hered ; 106(1): 113-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25429024

RESUMO

Viability and fertility in organisms depend on epistatic interactions between loci maintained in lineages. Here, we describe reduced fitness of segregants (hybrid breakdown, HB) that emerged in an F2 population derived from a cross between 2 rice (Oryza sativa L.) cultivars, "Tachisugata" (TS) and "Hokuriku 193" (H193), despite both parents and F1s showing normal fitness. Quantitative trait locus (QTL) analyses detected 13 QTLs for 4 morphological traits associated with the HB and 6 associated with principal component scores calculated from values of the morphological traits in the F2 population. Two-way analysis of variance of the putative QTLs identified 4 QTL pairs showing significant epistasis; among them, a pair on chromosomes 1 and 12 made the greatest contribution to HB. The finding was supported by genetic experiments using F3 progeny. HB emerged only when a plant was homozygous for the TS allele at the QTL on chromosome 1 and homozygous for the H193 allele at the QTL on chromosome 12, indicating that each allele behaves as recessive to the other. Our results support the idea that epistasis is an essential part of hybrid fitness.


Assuntos
Epistasia Genética/genética , Aptidão Genética/genética , Hibridização Genética , Oryza/genética , Análise de Variância , Mapeamento Cromossômico , Cruzamentos Genéticos , Genética Populacional , Genótipo , Oryza/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Locos de Características Quantitativas
14.
Breed Sci ; 65(5): 388-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719741

RESUMO

Plant breeding programs aim to develop cultivars with high adaptability to the specific conditions in a local region. As a result, unique genes and gene combinations have been accumulated in local elite breeding populations during the long history of plant breeding. Genetic analyses on such genes and combinations may be useful for developing new cultivars with more-desirable agronomic traits. Here, we attempted to detect quantitative trait loci (QTL) for rice blast resistance (BR) using a local breeding rice population from Hokkaido, Japan. Using genotyping data on single nucleotide polymorphisms and simple sequence repeat markers distributed throughout the whole genomic region, we detected genetic regions associated with phenotypic variation in BR by a genome-wide association mapping study (GWAS). An additional association analysis using other breeding cultivars verified the effect and inheritance of the associated region. Furthermore, the existence of a gene for BR in the associated region was confirmed by QTL mapping. The results from these studies enabled us to estimate potential of the Hokkaido rice population as a gene pool for improving BR. The results of this study could be useful for developing novel cultivars with vigorous BR in rice breeding programs.

15.
Breed Sci ; 65(3): 201-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175616

RESUMO

Improving the eating quality of cooked rice has been one of the most important objectives in rice breeding programs. Eating quality of cooked rice is a complex trait including several components, such as external appearance, taste, aroma, and texture. Therefore, dissection of these components followed by marker-assisted selection of detected QTL(s) may be a useful approach for achieving desirable eating quality in rice breeding. Whiteness of cooked rice (WCR) is an important factor related to the external appearance of cooked rice. WCR is known to be associated with the amylose and protein contents of the endosperm. However, the genetic basis of WCR remains unclear. In this study, we evaluated phenotypic variation in WCR among recently developed rice cultivars from Hokkaido, Japan. Then, we developed doubled haploid lines (DHLs) derived from a cross between two cultivars from Hokkaido, Joiku No. 462 (high WCR) and Jokei06214 (low WCR). Using the DHLs, we detected two QTLs for WCR, qWCR3 and qWCR11, on chromosomes 3 and 11, respectively. We also examined the dosage effect of the two QTLs based on both the categorized segregants in the DHLs and the relationship between the WCR phenotype and inheritance around the QTL regions in cultivars from Hokkaido.

16.
Breed Sci ; 65(3): 216-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175618

RESUMO

There is increasing evidence that global warming affects the development of rice. High temperatures during ripening increase the ratio of undesirable chalky grains followed by deteriorating grain appearance quality. In order to detect quantitative trait loci (QTLs) controlling the occurrence of white-back and basal-white chalky grains of brown rice, QTL analysis was performed using recombinant inbred lines derived from a cross between two strains, 'Tsukushiroman' (sensitive to heat stress) and 'Chikushi 52' (tolerant of heat stress). The F7 and F8 lines were exposed to heat stress during the ripening period in two locations, Fukuoka and Kagoshima, in Japan. QTLs for white-back grains and basal-white grains were detected on chromosomes 1, 3, and 8, and those for basal-white grains were detected on chromosomes 2, 3, and 12. QTLs on chromosome 8 for white-back grains were shared in the plants grown in both locations. Near-isogenic lines (NILs), which harbored a segment from 'Chikushi 52' on chromosome 8 with the genetic background of 'Tsukushiroman', showed relatively lower ratios of white-back grains than 'Tsukushiroman'. Therefore, insertion of the 'Chikushi 52' genomic region of the QTL on chromosome 8 can improve the quality of rice when it is grown under heat stress conditions.

17.
BMC Genomics ; 15: 346, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24885019

RESUMO

BACKGROUND: High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield. RESULTS: An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta. CONCLUSIONS: Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.


Assuntos
Genoma de Planta , Oryza/genética , Alelos , Cromossomos de Plantas , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Desequilíbrio de Ligação , Oryza/classificação , Fenótipo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
BMC Plant Biol ; 14: 295, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404368

RESUMO

BACKGROUND: Increasing rice yield potential is a major objective in rice breeding programs, given the need for meeting the demands of population growth, especially in Asia. Genetic analysis using genomic information and high-yielding cultivars can facilitate understanding of the genetic mechanisms underlying rice yield potential. Chromosome segment substitution lines (CSSLs) are a powerful tool for the detection and precise mapping of quantitative trait loci (QTLs) that have both large and small effects. In addition, reciprocal CSSLs developed in both parental cultivar backgrounds may be appropriate for evaluating gene activity, as a single factor or in epistatic interactions. RESULTS: We developed reciprocal CSSLs derived from a cross between Takanari (one of the most productive indica cultivars) and a leading japonica cultivar, Koshihikari; both the cultivars were developed in Japan. Forty-one CSSLs covered most of the Takanari genome in the Koshihikari background and 39 CSSLs covered the Koshihikari genome in the Takanari background. Using the reciprocal CSSLs, we conducted yield trials under canopy conditions in paddy fields. While no CSSLs significantly exceeded the recurrent parent cultivar in yield, genetic analysis detected 48 and 47 QTLs for yield and its components in the Koshihikari and Takanari backgrounds, respectively. A number of QTLs showed a trade-off, in which the allele with increased sink-size traits (spikelet number per panicle or per square meter) was associated with decreased ripening percentage or 1000-grain weight. These results indicate that increased sink size is not sufficient to increase rice yield in both backgrounds. In addition, most QTLs were detected in either one of the two genetic backgrounds, suggesting that these loci may be under epistatic control with other gene(s). CONCLUSIONS: We demonstrated that the reciprocal CSSLs are a useful tool for understanding the genetic mechanisms underlying yield potential in the high-yielding rice cultivar Takanari. Our results suggest that sink-size QTLs in combination with QTLs for source strength or translocation capacity, as well as careful attention to epistatic interactions, are necessary for increasing rice yield. Thus, our findings provide a foundation for developing rice cultivars with higher yield potential in future breeding programs.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Locos de Características Quantitativas/genética , Cruzamento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genômica , Genótipo , Oryza/crescimento & desenvolvimento , Fenótipo
19.
J Exp Bot ; 65(8): 2049-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591053

RESUMO

Increases in rates of individual leaf photosynthesis (P n) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between indica cultivar Habataki, with one of the highest recorded values of P n, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect P n. The present study examined the combined effect of qCAR4 and qCAR8 on P n in the genetic background of Koshihikari. The pyramided near-isogenic line NIL(qCAR4+qCAR8) showed higher P n than both NIL(qCAR4) and NIL(qCAR8), equivalent to that of Habataki despite being due to only two out of the four QTLs. The high P n of NIL(qCAR4+qCAR8) may be attributable to the high leaf nitrogen content, which may have been inherited from NIL(qCAR4), to the large hydraulic conductance due to the large root surface area from NIL(qCAR4), and to the high hydraulic conductivity from NIL(qCAR8). It might be also attributable to high mesophyll conductance, which may have been inherited from NIL(qCAR4). The induction of mesophyll conductance and the high leaf nitrogen content and high hydraulic conductivity could not be explained in isolation from the Koshihikari background. These results suggest that QTL pyramiding is a useful approach in rice breeding aimed at increasing P n.


Assuntos
Cromossomos de Plantas , Oryza/fisiologia , Fotossíntese/genética , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Genoma de Planta , Hibridização Genética , Oryza/genética , Folhas de Planta/genética
20.
Theor Appl Genet ; 127(4): 995-1004, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24510168

RESUMO

KEY MESSAGE: The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.


Assuntos
Agricultura , Cruzamento , Oryza/crescimento & desenvolvimento , Oryza/genética , Agricultura/história , Cruzamento/história , Genética Populacional , Haplótipos/genética , História do Século XIX , História do Século XX , História do Século XXI , Japão , Linhagem , Filogenia , Polimorfismo Genético , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA