Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(18): 9896-9905, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321834

RESUMO

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvß1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin ß1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Integrina beta1/genética , Trombospondina 1/genética , Fatores de Transcrição/genética , Remodelação Vascular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Artérias Carótidas/crescimento & desenvolvimento , Artérias Carótidas/metabolismo , Microambiente Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adesões Focais/genética , Via de Sinalização Hippo , Humanos , Integrina beta1/metabolismo , Mecanotransdução Celular , Camundongos , Neointima/genética , Neointima/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genética
2.
Arterioscler Thromb Vasc Biol ; 40(8): 1905-1917, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580633

RESUMO

OBJECTIVE: Remodeling of the extracellular matrix plays a vital role in cardiovascular diseases. Using a mouse model of postnatal ascending aortic aneurysms (termed Fbln4SMKO), we have reported that abnormal mechanosensing led to aneurysm formation in Fbln4SMKO with an upregulation of the mechanosensitive transcription factor, Egr1 (Early growth response 1). However, the role of Egr1 and its upstream regulator(s) in the initiation of aneurysm development and their relationship to an aneurysmal microenvironment are unknown. Approach and Results: To investigate the contribution of Egr1 in the aneurysm development, we deleted Egr1 in Fbln4SMKO mice and generated double knockout mice (DKO, Fbln4SMKO; Egr1-/-). Aneurysms were prevented in DKO mice (42.8%) and Fbln4SMKO; Egr1+/- mice (26%). Ingenuity Pathway Analysis identified PAR1 (protease-activated receptor 1) as a potential Egr1 upstream gene. Protein and transcript levels of PAR1 were highly increased in Fbln4SMKO aortas at postnatal day 1 before aneurysm formed, together with active thrombin and MMP (matrix metalloproteinase)-9, both of which serve as a PAR1 activator. Concordantly, protein levels of PAR1, Egr1, and thrombin were significantly increased in human thoracic aortic aneurysms. In vitro cyclic stretch assays (1.0 Hz, 20% strain, 8 hours) using mouse primary vascular smooth muscle cells induced marked expression of PAR1 and secretion of prothrombin in response to mechanical stretch. Thrombin was sufficient to induce Egr1 expression in a PAR1-dependent manner. CONCLUSIONS: We propose that thrombin, MMP-9, and mechanical stimuli in the Fbln4SMKO aorta activate PAR1, leading to the upregulation of Egr1 and initiation of ascending aortic aneurysms.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Receptor PAR-1/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas da Matriz Extracelular/deficiência , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Pessoa de Meia-Idade , Receptor PAR-1/antagonistas & inibidores , Estresse Mecânico , Trombina/farmacologia
3.
Clin Sci (Lond) ; 134(17): 2399-2418, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32936305

RESUMO

Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix-cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell-cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)-both of which activate several key transcription factors. Finally, we provide a recent overview of matrix-cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.


Assuntos
Homeostase , Mecanotransdução Celular , Doenças Vasculares/patologia , Animais , Fenômenos Biomecânicos , Células Endoteliais/metabolismo , Humanos , Estresse Mecânico , Doenças Vasculares/fisiopatologia
4.
Circ Res ; 123(6): 660-672, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30355232

RESUMO

RATIONALE: Abnormal mechanosensing of smooth muscle cells (SMCs) resulting from the defective elastin-contractile units has been suggested to drive the formation of thoracic aortic aneurysms; however, the precise molecular mechanism has not been elucidated. OBJECTIVE: The aim of this study was to identify the crucial mediator(s) involved in abnormal mechanosensing and propagation of biochemical signals during the aneurysm formation and to establish a basis for a novel therapeutic strategy. METHODS AND RESULTS: We used a mouse model of postnatal ascending aortic aneurysms ( Fbln4SMKO; termed SMKO [SMC-specific knockout]), in which deletion of Fbln4 (fibulin-4) leads to disruption of the elastin-contractile units caused by a loss of elastic lamina-SMC connections. In this mouse, upregulation of Egr1 (early growth response 1) and angiotensin-converting enzyme leads to activation of Ang II (angiotensin II) signaling. Here, we showed that the matricellular protein, Thbs1 (thrombospondin-1), was highly upregulated in SMKO ascending aortas and in human thoracic aortic aneurysms. Thbs1 was induced by mechanical stretch and Ang II in SMCs, for which Egr1 was required, and reduction of Fbln4 sensitized the cells to these stimuli and led to higher expression of Egr1 and Thbs1. Deletion of Thbs1 in SMKO mice prevented the aneurysm formation in ≈80% of DKO (SMKO;Thbs1 knockout) animals and suppressed Ssh1 (slingshot-1) and cofilin dephosphorylation, leading to the formation of normal actin filaments. Furthermore, elastic lamina-SMC connections were restored in DKO aortas, and mechanical testing showed that structural and material properties of DKO aortas were markedly improved. CONCLUSIONS: Thbs1 is a critical component of mechanotransduction, as well as a modulator of elastic fiber organization. Maladaptive upregulation of Thbs1 results in disruption of elastin-contractile units and dysregulation of actin cytoskeletal remodeling, contributing to the development of ascending aortic aneurysms in vivo. Thbs1 may serve as a potential therapeutic target for treating thoracic aortic aneurysms.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Mecanotransdução Celular , Músculo Liso Vascular/metabolismo , Trombospondina 1/metabolismo , Remodelação Vascular , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/prevenção & controle , Células Cultivadas , Cofilina 2/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Elastina/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Pressorreceptores/metabolismo , Ratos , Estresse Mecânico , Trombospondina 1/deficiência , Trombospondina 1/genética
5.
Hum Mol Genet ; 24(20): 5867-79, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26220971

RESUMO

Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations.


Assuntos
Aorta/metabolismo , Colágeno/biossíntese , Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Animais , Colágeno/metabolismo , Elastina/metabolismo , Deleção de Genes , Homozigoto , Camundongos , Músculo Liso/metabolismo , Oxirredução , Proteína-Lisina 6-Oxidase/metabolismo , Proteômica
6.
Cardiovasc Res ; 119(7): 1606-1618, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537041

RESUMO

AIMS: Endothelial-to-mesenchymal transition (EndMT) is a fundamental process in vascular remodelling. However, the precise regulatory mechanism of vascular remodelling during neointima formation and the source of neointima cells are not entirely understood. METHODS AND RESULTS: To investigate the origin of neointima cells and their relevance to vascular wall remodelling, we used an endothelial cell (EC)-specific lineage tracing system [VE-Cadherin (Cdh5)-BAC-CreERT2 mice] and carotid artery ligation model and showed evidence that resident ECs transdifferentiate into neointima cells with the expression of CD45. During the early stages of neointima formation, ECs transiently expressed CD45, a haematopoietic marker, accompanied by a host of EndMT markers, and CD31 and αSMA were prominently expressed in developing neointima. In vitro, CD45-positive EndMT was induced by stabilization of HIF1α with cobalt chloride or with a VHL inhibitor in human primary ECs, which mimicked the hypoxic condition of the ligated artery, and promoted the formation of an integrin α11-shank-associated RH domain-interacting protein (SHARPIN) complex. Notably, a CD45 phosphatase inhibitor disrupted this integrin α11-SHARPIN complex, thereby destabilizing cell-cell junctions. Deletion of Hif1α in ECs suppressed expression of CD45 and EndMT markers and ameliorated neointima formation. CONCLUSION: These results suggest that the HIF-induced CD45 expression is normally required for the retention of an EC fate and cell-cell junctions, CD45-positive EndMT (termed as 'partial EndMT') contributes to neointima formation and vascular wall remodelling.


Assuntos
Neointima , Remodelação Vascular , Animais , Humanos , Camundongos , Artérias Carótidas/cirurgia , Células Cultivadas , Endotélio , Transição Epitelial-Mesenquimal , Integrinas , Antígenos Comuns de Leucócito/metabolismo
7.
J Am Heart Assoc ; 12(1): e026942, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565192

RESUMO

Background Homeostasis of the vessel wall is cooperatively maintained by endothelial cells (ECs), smooth muscle cells, and adventitial fibroblasts. The genetic deletion of fibulin-4 (Fbln4) in smooth muscle cells (SMKO) leads to the formation of thoracic aortic aneurysms with the disruption of elastic fibers. Although Fbln4 is expressed in the entire vessel wall, its function in ECs and relevance to the maintenance of valvulo-arterial integrity are not fully understood. Methods and Results Gene silencing of FBLN4 was conducted on human aortic ECs to evaluate morphological changes and gene expression profile. Fbln4 double knockout (DKO) mice in ECs and smooth muscle cells were generated and subjected to histological analysis, echocardiography, Western blotting, RNA sequencing, and immunostaining. An evaluation of the thoracic aortic aneurysm phenotype and screening of altered signaling pathways were performed. Knockdown of FBLN4 in human aortic ECs induced mesenchymal cell-like changes with the upregulation of mesenchymal genes, including TAGLN and MYL9. DKO mice showed the exacerbation of thoracic aortic aneurysms when compared with those of SMKO and upregulated Thbs1, a mechanical stress-responsive molecule, throughout the aorta. DKO mice also showed progressive aortic valve thickening with collagen deposition from postnatal day 14, as well as turbulent flow in the ascending aorta. Furthermore, RNA sequencing and immunostaining of the aortic valve revealed the upregulation of genes involved in endothelial-to-mesenchymal transition, inflammatory response, and tissue fibrosis in DKO valves and the presence of activated valve interstitial cells. Conclusions The current study uncovers the pivotal role of endothelial fibulin-4 in the maintenance of valvulo-arterial integrity, which influences thoracic aortic aneurysm progression.


Assuntos
Aneurisma da Aorta Torácica , Células Endoteliais , Camundongos , Animais , Humanos , Aorta/patologia , Artérias , Aneurisma da Aorta Torácica/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Front Cell Dev Biol ; 10: 750829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399536

RESUMO

Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in C9orf72 have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response. PR poly-dipeptides increased the junctions and branches of the IF network and increased cell stiffness. They also changed the distribution of actin filaments and increased the size of FA and intracellular calcium concentration. PR poly-dipeptides or an inhibitor of IF organization prevented cell detachment. Furthermore, PR poly-dipeptides induced upregulation of mechanical stress response factors and led to a maladaptive response to cyclic stretch. These results suggest that the effects of PR poly-dipeptides on mechanical properties and mechanical stress response may serve as a pathogenesis of C9orf72-related neurodegeneration.

10.
Sci Rep ; 11(1): 8683, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883668

RESUMO

The maladaptive remodeling of vessel walls with neointima formation is a common feature of proliferative vascular diseases. It has been proposed that neointima formation is caused by the dedifferentiation of mature smooth muscle cells (SMCs). Recent evidence suggests that adventitial cells also participate in neointima formation; however, their cellular dynamics are not fully understood. In this study, we utilized a lineage tracing model of platelet-derived growth factor receptor alpha (PDGFRa) cells and examined cellular behavior during homeostasis and injury response. PDGFRa marked adventitial cells that were largely positive for Sca1 and a portion of medial SMCs, and both cell types were maintained for 2 years. Upon carotid artery ligation, PDGFRa-positive (+) cells were slowly recruited to the neointima and exhibited an immature SMC phenotype. In contrast, in a more severe wire denudation injury, PDGFRa+ cells were recruited to the neointima within 14 days and fully differentiated into SMCs. Under pressure overload induced by transverse aortic constriction, PDGFRa+ cells developed marked adventitial fibrosis. Taken together, our observations suggest that PDGFRa+ cells serve as a reservoir of adventitial cells and a subset of medial SMCs and underscore their context-dependent response to vascular injuries.


Assuntos
Vasos Sanguíneos/lesões , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Túnica Adventícia/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiologia , Proliferação de Células , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Neointima/metabolismo
11.
Cell Rep Med ; 2(5): 100261, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095874

RESUMO

Aortic rupture and dissection are life-threatening complications of ascending thoracic aortic aneurysms (aTAAs), and risk assessment has been largely based on the monitoring of lumen size enlargement. Temporal changes in the extracellular matrix (ECM), which has a critical impact on aortic remodeling, are not routinely evaluated, and cardiovascular biomarkers do not exist to predict aTAA formation. Here, Raman microspectroscopy and Raman imaging are used to identify spectral biomarkers specific for aTAAs in mice and humans by multivariate data analysis (MVA). Multivariate curve resolution-alternating least-squares (MCR-ALS) combined with Lasso regression reveals elastic fiber-derived (Ce1) and collagen fiber-derived (Cc6) components that are significantly increased in aTAA lesions of murine and human aortic tissues. In particular, Cc6 detects changes in amino acid residues, including phenylalanine, tyrosine, tryptophan, cysteine, aspartate, and glutamate. Ce1 and Cc6 may serve as diagnostic Raman biomarkers that detect alterations of amino acids derived from aneurysm lesions.


Assuntos
Aorta Torácica/patologia , Aneurisma da Aorta Torácica/patologia , Aneurisma Aórtico/patologia , Biomarcadores/análise , Análise Espectral Raman , Dissecção Aórtica/patologia , Animais , Aorta/patologia , Ruptura Aórtica/patologia , Humanos , Camundongos , Análise Espectral Raman/métodos , Estresse Mecânico , Resistência à Tração/fisiologia
12.
Biochem Biophys Res Commun ; 399(3): 365-72, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20659422

RESUMO

Cutaneous squamous cell carcinoma (cSCC) results from transformation of epidermal keratinocytes. Invasion of transformed keratinocytes through the basement membrane into the dermis results in invasive cSCC with substantial metastatic potential. To better understand the mechanisms for invasion and metastasis, we compared the protein expression profiles of a non-metastatic transformed mouse keratinocyte line and its metastatic derivative. Keratin 8 (Krt8) and Krt18, not seen in normal keratinocytes, were coexpressed and formed Krt8/18 filaments in the metastatic line. The metastatic line efficiently invaded an artificial basement membrane in vitro owing to the Krt8/18-coexpression, since coexpression of exogenous Krt8/18 in the non-invasive parental line conferred invasiveness. To test whether the Krt8/18-coexpression is induced and is involved in cSCC invasion, we examined specimens from 21 pre-invasive and 24 invasive cSCC patients by immunohistochemistry, and the ectopic Krt8/18-coexpression was almost exclusively found in invasive cSCC. Further studies are needed to examine the clinical significance of ectopic Krt8/18-coexpression in cSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Queratina-18/biossíntese , Queratina-8/biossíntese , Queratinócitos/patologia , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Humanos , Queratinócitos/metabolismo , Camundongos , Invasividade Neoplásica
13.
Biochem Biophys Res Commun ; 378(4): 732-7, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19061864

RESUMO

Rap2A, Rap2B, and Rap2C are Ras-like small G proteins. The role of their post-translational processing has not been investigated due to the lack of information on their downstream signaling. We have recently identified the Traf2- and Nck-interacting kinase (TNIK), a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases, as a specific Rap2 effector. Here we report that, in HEK293T cells, Rap2A (farnesylated) and Rap2C (likely farnesylated), but not Rap2B (geranylgeranylated), require palmitoylation for membrane-association and TNIK activation, whereas all Rap2 proteins, including Rap2B, require palmitoylation for induction of TNIK-mediated phenotype, the suppression of cell spreading. Furthermore, we report for the first time that, in COS-1 cells, Rap2 proteins localize, and recruit TNIK, to the recycling endosomes, but not the Golgi nor the endoplasmic reticulum, in a palmitoylation-dependent manner. These observations implicate the involvement of palmitoylation and recycling endosome localization in cellular functions of Rap2 proteins.


Assuntos
Endossomos/enzimologia , Lipoilação , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/enzimologia , Ativação Enzimática , Quinases do Centro Germinativo , Complexo de Golgi/enzimologia , Humanos , Dados de Sequência Molecular , Fenótipo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo
14.
Mol Genet Genomic Med ; 7(11): e986, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31560829

RESUMO

BACKGROUND: Supravalvular aortic stenosis (SVAS) is one of the congenital cardiovascular diseases characterized by stenosis of the aorta. The stenotic lesions occur anywhere above the aortic valve in the aortic tree as well as pulmonary arteries and eventually leads to circulatory failure. The disease gene has been identified on the elastin gene (ELN) and two types of SVAS have been categorized; a familial type and an isolated type with the de novo mutation. METHODS: Fluorescent In situ hybridization (FISH) analysis and gene sequencing were performed in a two-generation family in which severe form of SVAS was diagnosed. RESULTS: None of the patients tested showed microdeletion of ELN, LIMK1, and D7S613. A novel nonsense mutation of ELN (c.160G>T (p.(Gly54*)), RNA not analyzed) was found in exon 3 in three members; two of them died suddenly due to rapid progression of SVAS with possible arrhythmia in early infancy. A point mutation in the 5' untranslated region, which was previously suggested to be associated with SVAS, did not co-segregate with the SVAS phenotype and found to be SNPs. CONCLUSION: Our report shows a broad spectrum of clinical features in family members sharing the identical mutations, suggesting a potential contribution of modifier gene(s) or interactions with environmental factors.


Assuntos
Estenose Aórtica Supravalvular/genética , Elastina/genética , Mutação Puntual , Adulto , Estenose Aórtica Supravalvular/diagnóstico por imagem , Povo Asiático , Saúde da Família , Feminino , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Japão , Masculino , Linhagem
15.
Biochem Biophys Res Commun ; 377(2): 573-578, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18930710

RESUMO

Rap1 and Rap2 are similar Ras-like G proteins but perform distinct functions. By the affinity chromatography/mass-spectrometry approach and the yeast two-hybrid screening, we identified Misshapen/NIKs-related kinase (MINK) as a novel Rap2-interacting protein that does not interact with Rap1 or Ras. MINK is a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases. The interaction between MINK and Rap2 was GTP-dependent and required Phe39 within the effector region of Rap2; the corresponding residue in Rap1 and Ras is Ser. MINK was enriched in the brain, and both MINK and its close relative, Traf2- and Nck-interacting kinase (TNIK), interacted with a postsynaptic scaffold protein containing tetratricopeptide repeats, ankyrin repeats and a coiled-coil region (TANC1) and induced its phosphorylation, under control of Rap2 in cultured cells. These are novel actions of MINK and TNIK, and consistent with a role of MINK as a Rap2 effector in the brain.


Assuntos
Encéfalo/metabolismo , Venenos de Crotalídeos/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Pareamento Cromossômico , Venenos de Crotalídeos/genética , Quinases do Centro Germinativo , Humanos , Lectinas Tipo C/genética , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos
16.
Jpn J Ophthalmol ; 52(2): 84-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18626730

RESUMO

PURPOSE: To investigate global protein expression profiles in the retinas of normal and glucocorticoid-induced ocular hypertensive rats by proteomic analysis. METHODS: Ocular hypertension was induced by topical application of dexamethasone (DEX) for 4 weeks. Age-matched untreated rats served as controls. Intraocular pressure (IOP) was monitored by an electronic tonometer. Retinal protein expression profiling was carried out by two-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Proteins were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. RESULTS: In DEX-treated rats, average IOP was elevated significantly compared with controls. With DEX treatment, levels of four proteins were altered, as revealed by 2-D DIGE and MALDI-TOF mass spectrometry: apolipoprotein A1 (apoA1), a lipid-binding protein, upregulated 1.9-fold, P < 0.05; alpha A crystallin (CRYAA), a molecular chaperone, downregulated 2.7-fold, P < 0.01; superoxide dismutase 1 (SOD1), an antioxidant enzyme, downregulated 2.3-fold, P < 0.05; and triosephosphate isomerase 1 (TPI1), a glycolytic enzyme, downregulated 2.3-fold, P < 0.01. CONCLUSIONS: Downregulation of CRYAA, SOD1, and TPI1, observed here after a short period of DEX-induced ocular hypertension, may be involved in the onset of neural damage in steroid-induced glaucoma.


Assuntos
Modelos Animais de Doenças , Hipertensão Ocular/metabolismo , Estresse Oxidativo , Retina/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Dexametasona , Regulação para Baixo , Eletroforese em Gel Bidimensional , Glucocorticoides , Pressão Intraocular , Hipertensão Ocular/induzido quimicamente , Proteômica , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Triose-Fosfato Isomerase/metabolismo , Cadeia A de alfa-Cristalina/metabolismo
17.
J Atheroscler Thromb ; 25(2): 99-110, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943527

RESUMO

Thoracic aortic aneurysms (TAAs) are common, life-threatening diseases and are a major cause of mortality and morbidity. Over the past decade, genetic approaches have revealed that 1) activation of the transforming growth factor beta (TGF-ß) signaling, 2) alterations in the contractile apparatus of vascular smooth muscle cells (SMCs), and 3) defects in the extracellular matrix (ECM) were responsible for development of TAAs. Most recently, a fourth mechanism has been proposed in that dysfunction of mechanosensing in the aortic wall in response to hemodynamic stress may be a key driver of TAAs. Interestingly, the elastin-contractile unit, which is an anatomical and functional unit connecting extracellular elastic laminae to the intracellular SMC contractile filaments, via cell surface receptors, has been shown to play a critical role in the mechanosensing of SMCs, and many genes identified in TAAs encode for proteins along this continuum. However, it is still debated whether these four pathways converge into a common pathway. Currently, an effective therapeutic strategy based on the underlying mechanism of each type of TAAs has not been established. In this review, we will update the present knowledge on the molecular mechanism of TAAs with a focus on the signaling pathways potentially involved in the initiation of TAAs. Finally, we will evaluate current therapeutic strategies for TAAs and propose new directions for future treatment of TAAs.


Assuntos
Aneurisma da Aorta Torácica/fisiopatologia , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Transdução de Sinais
18.
Matrix Biol ; 74: 5-20, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29730503

RESUMO

Ectopic calcification occurs during development of chronic kidney disease and has a negative impact on long-term prognosis. The precise molecular mechanism and prevention strategies, however, are not established. Fibulin-7 (Fbln7) is a matricellular protein structurally similar to elastogenic short fibulins, shown to bind dental mesenchymal cells and heparin. Here, we report that Fbln7 is highly expressed in renal tubular epithelium in the adult kidney and mediates renal calcification in mice. In vitro analysis revealed that Fbln7 bound heparin at the N-terminal coiled-coil domain. In Fbln7-expressing CHO-K1 cells, exogenous heparin increased the release of Fbln7 into conditioned media in a dose-dependent manner. This heparin-induced Fbln7 release was abrogated in CHO-745 cells lacking heparan sulfate proteoglycan or in CHO-K1 cells expressing the Fbln7 mutant lacking the N-terminal coiled-coil domain, suggesting that Fbln7 was tethered to pericellular matrix via this domain. Interestingly, Fbln7 knockout (Fbln7-/-) mice were protected from renal tubular calcification induced by high phosphate diet. Mechanistically, Fbln7 bound artificial calcium phosphate particles (aCPP) implicated in calcification and renal inflammation. Binding was decreased significantly in Fbln7-/- primary kidney cells relative to wild-type cells. Further, overexpression of Fbln7 increased binding to aCPP. Addition of heparin reduced binding between aCPP and wild-type cells to levels of Fbln7-/- cells. Taken together, our study suggests that Fbln7 is a local mediator of calcium deposition and that releasing Fbln7 from the cell surface by heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a novel strategy to prevent ectopic calcification in vivo.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Heparina/metabolismo , Nefrocalcinose/metabolismo , Animais , Sítios de Ligação , Células CHO , Fosfatos de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Membrana Celular/metabolismo , Cricetulus , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Células HEK293 , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Camundongos , Mutação , Nefrocalcinose/induzido quimicamente , Nefrocalcinose/genética , Ligação Proteica
19.
Ophthalmic Res ; 39(6): 330-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18046086

RESUMO

PURPOSE: To investigate global protein expression profiles in the trabecular meshwork (TM) of normal and glucocorticoid-induced ocular hypertensive rat eyes by proteomic analysis, which has not yet been conducted to date. MATERIALS AND METHODS: A rat ocular hypertension model was produced by topical application of dexamethasone (DEX) for 4 weeks. Age-matched untreated rats served as controls. Intraocular pressure (IOP) was monitored by an electronic tonometer. TM protein expression profiling and protein identification was carried out by a two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) system and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, respectively. RESULTS: In DEX-treated rats, average IOP was elevated significantly, as compared with controls. By the DEX treatment, 14 TM protein spots were up- or downregulated consistently in 2-D DIGE analyses. Proteins exhibiting more than 2-fold statistically significant change were identified by MALDI-TOF mass spectrometry. alpha A-Crystallin and beta A(3)-crystallin were upregulated, while the C-propeptides of type I collagen were downregulated. CONCLUSION: Relatively short-term glucocorticoid application induced alteration in the expression of a number of proteins, including downregulation of type I collagen C-propeptides. This could reflect impaired collagen turnover in the TM of glucocorticoid-treated eyes.


Assuntos
Colágeno Tipo I/metabolismo , Hipertensão Ocular/metabolismo , Precursores de Proteínas/metabolismo , Proteômica , Malha Trabecular/metabolismo , Animais , Cristalinas/metabolismo , Dexametasona , Regulação para Baixo , Eletroforese em Gel Bidimensional , Glucocorticoides , Pressão Intraocular , Masculino , Espectrometria de Massas , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/fisiopatologia , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Regulação para Cima , Cadeia A de alfa-Cristalina
20.
Sci Signal ; 8(399): ra105, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26486174

RESUMO

Smooth muscle cells (SMCs) and the extracellular matrix (ECM) are intimately associated in the aortic wall. Fbln4(SMKO) mice with an SMC-specific deletion of the Fbln4 gene, which encodes the vascular ECM component fibulin-4, develop ascending aortic aneurysms that have increased abundance of angiotensin-converting enzyme (ACE); inhibiting angiotensin II signaling within the first month of life prevents aneurysm development. We used comparative proteomics analysis of Fbln4(SMKO) aortas from postnatal day (P) 1 to P30 mice to identify key molecules involved in aneurysm initiation and expansion. At P14, the actin depolymerizing factor cofilin was dephosphorylated and thus activated, and at P7, the abundance of slingshot-1 (SSH1) phosphatase, an activator of cofilin, was increased, leading to actin cytoskeletal remodeling. Also, by P7, biomechanical changes and underdeveloped elastic lamina-SMC connections were evident, and the abundance of early growth response 1 (Egr1), a mechanosensitive transcription factor that stimulates ACE expression, was increased, which was before the increases in ACE abundance and cofilin activation. Postnatal deletion of Fbln4 in SMCs at P7 prevented cofilin activation and aneurysm formation, suggesting that these processes required disruption of elastic lamina-SMC connections. Phosphoinositide 3-kinase (PI3K) is involved in the angiotensin II-mediated activation of SSH1, and administration of PI3K inhibitors from P7 to P30 decreased SSH1 abundance and prevented aneurysms. These results suggest that aneurysm formation arises from abnormal mechanosensing of SMCs resulting from the loss of elastic lamina-SMC connections and from increased SSH1 and cofilin activity, which may be potential therapeutic targets for treating ascending aortic aneurysms.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Aneurisma Aórtico/fisiopatologia , Animais , Progressão da Doença , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA