Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(8): 1568-1580, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36450387

RESUMO

OBJECTIVE: Immune checkpoint blockade (ICB) has improved cancer treatment, yet why most hepatocellular carcinoma (HCC) patients are resistant to PD-1 ICB remains elusive. Here, we elucidated the role of a programmed cell death protein 1 (PD-1) isoform, Δ42PD-1, in HCC progression and resistance to nivolumab ICB. DESIGN: We investigated 74 HCC patients in three cohorts, including 41 untreated, 28 treated with nivolumab and 5 treated with pembrolizumab. Peripheral blood mononuclear cells from blood samples and tumour infiltrating lymphocytes from tumour tissues were isolated for immunophenotyping. The functional significance of Δ42PD-1 was explored by single-cell RNA sequencing analysis and validated by functional and mechanistic studies. The immunotherapeutic efficacy of Δ42PD-1 monoclonal antibody was determined in HCC humanised mouse models. RESULTS: We found distinct T cell subsets, which did not express PD-1 but expressed its isoform Δ42PD-1, accounting for up to 71% of cytotoxic T lymphocytes in untreated HCC patients. Δ42PD-1+ T cells were tumour-infiltrating and correlated positively with HCC severity. Moreover, they were more exhausted than PD-1+ T cells by single T cell and functional analysis. HCC patients treated with anti-PD-1 ICB showed effective PD-1 blockade but increased frequencies of Δ42PD-1+ T cells over time especially in patients with progressive disease. Tumour-infiltrated Δ42PD-1+ T cells likely sustained HCC through toll-like receptors-4-signalling for tumourigenesis. Anti-Δ42PD-1 antibody, but not nivolumab, inhibited tumour growth in three murine HCC models. CONCLUSION: Our findings not only revealed a mechanism underlying resistance to PD-1 ICB but also identified anti-Δ42PD-1 antibody for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Leucócitos Mononucleares , Terapia de Imunossupressão , Tolerância Imunológica , Imunoterapia , Nivolumabe/uso terapêutico , Linfócitos T CD8-Positivos
2.
Mol Ther Oncolytics ; 20: 373-386, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33614918

RESUMO

The potency of cancer vaccines is often compromised by a variety of immunoinhibitory mechanisms, including stimulation of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint pathway. Here, to overcome inhibition, we determined the potential of recombinant adeno-associated virus (rAAV)-vectored, PD1-based vaccination in the tumor microenvironment (TME) to activate antigen-specific T cell responses in the immune-competent murine mesothelioma model. We found that our rAAV-soluble PD1 (sPD1)-TWIST1 vaccine elicited and maintained TWIST1-specific cytotoxic T lymphocyte (CTL) responses and the PD-1 blocker systemically against lethal mesothelioma challenge after intramuscular injection, which was more effective than rAAV-TWIST1 or rAAV-sPD1 alone. More importantly, intratumoral injection of rAAV-sPD1-TWIST1 significantly enhanced immune surveillance by inducing TWIST1-specific CTL responses against vaccine-encoded TWIST1 and bystander gp70-AH1 epitopes, increasing CTL infiltration into the TME and decreasing tumor-associated immunosuppression, leading to complete elimination of established mesothelioma in 5 of 8 tumor-bearing mice. In addition, direct oncosuppression synergized with recruitment of T cells after localized rAAV-sPD1-TWIST1 treatment in a humanized mouse model to inhibit growth of REN human mesothelioma. Our results warrant clinical development of the rAAV-sPD1-TWIST1 vaccine to enhance immunotherapy against a wide range of TWIST1-expressing tumors.

3.
Mol Ther Oncolytics ; 16: 302-317, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32195318

RESUMO

Checkpoint immunotherapy is a major breakthrough for cancer treatment, yet its efficacy is often limited against many types of malignancies, including malignant mesothelioma. Considering that the immunotherapeutic efficacy depends on immunosurveillance, we sought to develop an active immunization method to break immune tolerance to tumor self-antigen. Here, we demonstrated that TWIST1, the basic helix-loop-helix transcription factor, was associated with human mesothelioma tumorigenesis and required for the invasion and metastasis of mesothelioma in the immune-competent murine AB1 model. When conventional TWIST1 vaccines were not effective in vivo, programmed cell death protein 1 (PD1)-based vaccination provided prophylactic control by inducing long-lasting TWIST1-specific T cell responses against both subcutaneous and metastatic mesothelioma lethal challenges. Furthermore, while CTLA-4 blockade alone did not show any immunotherapeutic efficacy against established mesothelioma, its combination with PD1-based vaccination resulted in 60% complete remission. Mechanistically, these functional T cells recognized a novel highly conserved immunodominant TWIST1 epitope, exhibited cytotoxic activity and long-term memory, and led to durable tumor regression and survival benefit against established AB1 mesothelioma and 4T1 breast cancer. We concluded that PD1-based vaccination controls mesothelioma by breaking immune tolerance to the tumor self-antigen TWIST1. Our results warrant clinical development of the PD1-based vaccination to enhance immunotherapy against a wide range of TWIST1-expressing tumors.

4.
Oncoimmunology ; 8(1): e1518672, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30546960

RESUMO

Antitumor cytotoxic T lymphocytes (CTLs) are essential for immune surveillance, yet the blockade of eliciting such CTLs during oncolytic virotherapy remains incompletely understood. Here, we show that oncolysis of mesothelioma by modified vaccinia Tiantan (MVTT) induces damage-associated molecular patterns exposure. Although MVTT leads to regression of established mesothelioma dose-dependently, antitumor CTLs are rarely induced. Mechanistically, MVTT virotherapy generates C-X-C chemokines that recruit CXCR2-expressing polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into tumor microenvironment, where they suppress dendritic cells (DCs) by producing IL-10 and halt CTL responses. During the virotherapy, however, depletion of PMN-MDSCs but not of monocytic (M)-MDSCs results in the induction of potent antitumor CTLs that not only eradicate established mesothelioma but also prevent the second tumor challenge. Our findings suggest that vaccinia virotherapy may combine strategies that prevent the chemotactic recruitment of PMN-MDSCs, block their suppression on DCs or deplete PMN-MDSCs in order to induce potent CTLs for tumor eradication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA