RESUMO
The recent advances of single-cell RNA sequencing (scRNA-seq) have enabled reliable profiling of gene expression at the single-cell level, providing opportunities for accurate inference of gene regulatory networks (GRNs) on scRNA-seq data. Most methods for inferring GRNs suffer from the inability to eliminate transitive interactions or necessitate expensive computational resources. To address these, we present a novel method, termed GMFGRN, for accurate graph neural network (GNN)-based GRN inference from scRNA-seq data. GMFGRN employs GNN for matrix factorization and learns representative embeddings for genes. For transcription factor-gene pairs, it utilizes the learned embeddings to determine whether they interact with each other. The extensive suite of benchmarking experiments encompassing eight static scRNA-seq datasets alongside several state-of-the-art methods demonstrated mean improvements of 1.9 and 2.5% over the runner-up in area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, across four time-series datasets, maximum enhancements of 2.4 and 1.3% in AUROC and AUPRC were observed in comparison to the runner-up. Moreover, GMFGRN requires significantly less training time and memory consumption, with time and memory consumed <10% compared to the second-best method. These findings underscore the substantial potential of GMFGRN in the inference of GRNs. It is publicly available at https://github.com/Lishuoyy/GMFGRN.
Assuntos
Benchmarking , Redes Reguladoras de Genes , Área Sob a Curva , Aprendizagem , Redes Neurais de ComputaçãoRESUMO
The impact of Borrelia miyamotoi on human health, facilitated by the expanding geographical distribution and increasing population of Ixodes ticks, remains obscure in the context of global climate change. We employed multiple models to evaluate the effect of global climate change on the risk of B. miyamotoi worldwide across various scenarios. The habitat suitability index of four primary vector tick species for B. miyamotoi, including Ixodes persulcatus, Ixodes ricinus, Ixodes pacificus and Ixodes scapularis, was projected using a boosted regression tree model, considering multiple shared socio-economic pathway scenarios over various time periods. The modelling analysis reveals that, apart from I. scapularis, future global warming will result in a northward shift in the other three vector tick species and a gradual reduction in suitable habitats. Random forest models indicate consistent changes in B. miyamotoi and its primary tick species, with potential risk areas shrinking and shifting northward, particularly in the eastern USA, northeastern and northern Europe and northeast Asia. These findings highlight the urgent need for enhanced active surveillance of B. miyamotoi infection in primary vector tick species across projected potential risk areas. The effect of climate change on B. miyamotoi distribution might have significant implications for public health decision-making regarding tick-borne pathogens.
Assuntos
Borrelia , Mudança Climática , Ecossistema , Ixodes , Animais , Ixodes/microbiologia , Humanos , Infecções por Borrelia/epidemiologia , Infecções por Borrelia/microbiologia , Vetores Aracnídeos/microbiologiaRESUMO
In organic-inorganic hybrid perovskite solar cells (PSCs), hydrogen defects introduce deep-level trap states, significantly influencing non-radiative recombination processes. Those defects are primarily observed in MA-PSCs rather than FA-PSCs. As a result, MA-PSCs demonstrated a lower efficiency of 23.6% compared to 26.1% of FA-PSCs. In this work, both hydrogen vacancy (VH -) and hydrogen interstitial (Hi -) defects in MAPbI3 bulk and on surfaces, respectively are investigated. i) Bulk VH - defects have dramatic impact on non-radiative recombination, with lifetime varying from 67 to 8 ns, depending on whether deprotonated MA0 are ion-bonded or not. ii) Surface H-defects exhibited an inherent self-healing mechanism through a chemical bond between MA0 and Pb2+, indicating a self-passivation effect. iii) Both VH - and Hi - defects can be mitigated by alkali cation passivation; while large cations are preferable for VH - passivation, given strong binding energy of cation/perovskite, as well as, weak band edge non-adiabatic couplings; and small cations are suited for Hi - passivation, considering the steric hindrance effect. The dual passivation strategy addressed diverse experimental outcomes, particularly in enhancing performance associated with cation selections. The dynamic connection between hydrogen defects and non-radiative recombination is elucidated, providing insights into hydrogen defect passivation essential for high-performance PSCs fabrication.
RESUMO
Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.
RESUMO
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Assuntos
Agricultura , Microbiota , Rizosfera , Agricultura/métodos , Produtos Agrícolas/microbiologia , Desenvolvimento Sustentável , Microbiologia do SoloRESUMO
BACKGROUND: Qualified malaria diagnosis competency has contributed to the great achievement of malaria elimination in China. After eliminating malaria, it is still critical to the prevention of re-establishment of malaria transmission in China. This study was aimed to assess the malaria detection competency at national and provincial levels in China at the beginning of malaria post-elimination phase. METHODS: In the present study, different competency assessment activities on the laboratory malaria diagnosis were carried out for national and provincial malaria diagnostic laboratories based on the WHO scoring schedules, including malaria microscopy or nucleic acid amplification tests (NAAT), at the beginning of malaria post-elimination phase (2021-2022) in China. RESULTS: A total of 60 slides for malaria microscopy and 10 specimen for NAAT were included into the WHO External Quality Assessments of malaria parasite qualitative detection and species identification, and the scoring rate was 96.6% (microscopy: 171/177) and 85.0% (NAAT: 17/20), respectively. Moreover, 124 samples were included into the national NAAT quality assessment, and an accuracy of 87.9% (109/124) was found without significance among reference laboratories and non-reference laboratories. CONCLUSIONS: The findings suggest that there is still a need for sustained strengthening of malaria detection competency, particularly in the areas of parasite counting and detection of low-density parasitemia, to ensure prompt detection of the sources of infection and accurate identification of Plasmodium species, and contribute to case management and focus disposal, thereby effectively preventing the malaria re-establishment.
Assuntos
Malária , Plasmodium , Humanos , Malária/prevenção & controle , Técnicas de Laboratório Clínico , Laboratórios , ChinaRESUMO
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Assuntos
Criopreservação , Ovário , Criopreservação/métodos , Feminino , Humanos , AnimaisRESUMO
The objective of this study was to investigate the mechanism underlying LW-1-induced resistance to TMV in wild-type and salicylic acid (SA)-deficient NahG transgenic tobacco plants. Our findings revealed that LW-1 failed to induce antivirus infection activity and increase SA content in NahG tobacco, indicating the crucial role of SA in these processes. Meanwhile, LW-1 triggered defense-related early-signaling nitric oxide (NO) generation, as evidenced by the emergence of NO fluorescence in both types of tobacco upon treatment with LW-1, however, NO fluorescence was stronger in NahG compared to wild-type tobacco. Notably, both of them were eliminated by the NO scavenger cPTIO, which also reversed LW-1-induced antivirus activity and the increase of SA content, suggesting that NO participates in LW-1-induced resistance to TMV, and may act upstream of the SA pathway. Defense-related enzymes and genes were detected in tobacco with or without TMV inoculation, and the results showed that LW-1 regulated both enzyme activity (ß-1,3-glucanase [GLU], catalase [CAT] and phenylalanine ammonia-lyase [PAL]) and gene expression (PR1, PAL, WYKY4) through NO signaling in both SA-dependent and SA-independent pathways.
Assuntos
Resistência à Doença , Nicotiana , Óxido Nítrico , Doenças das Plantas , Ácido Salicílico , Vírus do Mosaico do Tabaco , Nicotiana/metabolismo , Nicotiana/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas/efeitos dos fármacosRESUMO
BACKGROUND: Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT: This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with ß-(1,3) glucoside bond as the main chain and ß-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION: Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.
Assuntos
Arabidopsis , Vírus do Mosaico do Tabaco , Resistência à Doença/genética , Transdução de Sinais , Nicotiana , Glucosídeos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genéticaRESUMO
Arecoline, the predominant bioactive substance extracted from areca nut (AN), is the world's fourth most frequently used psychoactive material. Research has revealed that chewing AN can affect the central nervous system (CNS) and may lead to neurocognitive deficits that are possibly linked to the action of arecoline. However, the mechanism behind the neurotoxicity caused by arecoline remains unclear. This study aimed to investigate the neurotoxic effects of arecoline and its underlying mechanism. The results showed that arecoline caused cytotoxicity against HT22 cells in a dose-dependent manner and induced apoptosis by upregulating the expression of pro-apoptotic caspase and Bcl-2 family proteins. Furthermore, arecoline escalated intracellular reactive oxygen species (ROS) levels and Ca2+ concentration with increasing doses, thereby motivating endoplasmic reticulum stress (ERS) and ERS-associated apoptotic protein expression. Additionally, the study found that arecoline attenuates intracellular antioxidant defense by inhibiting the translocation of NF-E2-related factor-2 (Nrf2) into the nucleus and decreasing downstream Heme oxygenase-1 (HO-1) levels. The specific inhibitor Sodium 4-phenylbutyrate (4-PBA) can dramatically attenuate arecoline-mediated cell apoptosis and ERS-associated apoptotic pathway expression by blocking ERS. The antioxidant N-Acetylcysteine (NAC) also effectively reverses the arecoline-mediated increase of ERS-related apoptotic pathway protein levels by scavenging intracellular ROS accumulation. In conclusion, this study suggests that arecoline induces neurotoxicity in HT22 cells via ERS mediated by oxidative stress- and Ca2+ disturbance, as well as by downregulation of the Nrf2/HO-1 pathway.
Assuntos
Apoptose , Arecolina , Estresse do Retículo Endoplasmático , Transdução de Sinais , Animais , Camundongos , Apoptose/efeitos dos fármacos , Arecolina/toxicidade , Cálcio/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The development of high-efficiency organic solar cells (OSCs) processed from non-halogenated solvents is crucially important for their scale-up industry production. However, owing to the difficulty of regulating molecular aggregation, there is a huge efficiency gap between non-halogenated and halogenated solvent processed OSCs. Herein, we fabricate o-xylene processed OSCs with approaching 20 % efficiency by incorporating a trimeric guest acceptor named Tri-V into the PM6:L8-BO-X host blend. The incorporation of Tri-V effectively restricts the excessive aggregation of L8-BO-X, regulates the molecular packing and optimizes the phase-separation morphology, which leads to mitigated trap density states, reduced energy loss and suppressed charge recombination. Consequently, the PM6:L8-BO-X:Tri-V-based device achieves an efficiency of 19.82 %, representing the highest efficiency for non-halogenated solvent-processed OSCs reported to date. Noticeably, with the addition of Tri-V, the ternary device shows an improved photostability than binary PM6:L8-BO-X-based device, and maintains 80 % of the initial efficiency after continuous illumination for 1380â h. This work provides a feasible approach for fabricating high-efficiency, stable, eco-friendly OSCs, and sheds new light on the large-scale industrial production of OSCs.
RESUMO
Side chain engineering plays a vital role in exploring high-performance small molecule acceptors (SMAs) for organic solar cells (OSCs). In this work, we designed and synthesized a series of A-DA'D-A type SMAs by introducing different N-substituted alkyl and ester alkyl side chains on benzotriazole (BZ) central unit and aimed to investigate the effect of different ester substitution positions on photovoltaic performances. All the new SMAs with ester groups exhibit lower the lowest unoccupied molecular orbital (LUMO) energy levels and more blue-shifted absorption, but relatively higher absorption coefficients than alkyl chain counterpart. After blending with the donor PM6, the ester side chain-based devices demonstrate enhanced charge mobility, reduced amorphous intermixing domain size and long-lived charge transfer state compared to the alkyl chain counterpart, which are beneficial to achieve higher short-circuit current density (Jsc ) and fill factor (FF), simultaneously. Thereinto, the PM6 : BZ-E31 based device achieves a higher power conversion efficiency (PCE) of 18.33 %, which is the highest PCE among the OSCs based on the SMAs with BZ-core. Our work demonstrated the strategy of ester substituted side chain is a feasible and effective approach to develop more efficient SMAs for OSCs.
RESUMO
This study puts forth a novel terminal group design to develop medium-bandgap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the bandgap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (VOC) as high as 0.96 V in binary devices, representing the highest VOCs among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6: BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 19.34%, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-bandgap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.
RESUMO
Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6â nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3ß-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.
Assuntos
Doença de Alzheimer , Tauopatias , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Ácido Okadáico/uso terapêutico , Fosforilação , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologiaRESUMO
Accurate and efficient cell type annotation is essential for single-cell sequence analysis. Currently, cell type annotation using well-annotated reference datasets with powerful models has become increasingly popular. However, with the increasing amount of single-cell data, there is an urgent need to develop a novel annotation method that can integrate multiple reference datasets to improve cell type annotation performance. Since the unwanted batch effects between individual reference datasets, integrating multiple reference datasets is still an open challenge. To address this, we proposed scMDR and scMultiR, respectively, using multisource domain adaptation to learn cell type-specific information from multiple reference datasets and query cells. Based on the learned cell type-specific information, scMDR and scMultiR provide the most likely cell types for the query cells. Benchmark experiments demonstrated their state-of-the-art effectiveness for integrative single-cell assignment with multiple reference datasets.
RESUMO
The main component of orange peel essential oil is limonene. Limonene is a natural active monoterpene with multiple functions, such as antibacterial, antiseptic and antitumor activity, and has important development value in agriculture. This study found that limonene exhibited excellent anti-tobacco mosaic virus (TMV) bioactivity, with results showing that its protection activity, inactivation activity, and curative activity at 800 µg/mL were 84.93%, 59.28%, and 58.89%, respectively-significantly higher than those of chito-oligosaccharides. A direct effect of limonene on TMV particles was not observed, but limonene triggered the hypersensitive response (HR) in tobacco. Further determination of the induction activity of limonene against TMV demonstrated that it displayed good induction activity at 800 µg/mL, with a value of 60.59%. The results of physiological and biochemical experiments showed that at different treatment days, 800 µg/mL limonene induced the enhancement of defense enzymes activity in tobacco, including of SOD, CAT, POD, and PAL, which respectively increased by 3.2, 4.67, 4.12, and 2.33 times compared with the control (POD and SOD activities reached highest on the seventh day, and PAL and CAT activities reached highest on the fifth day). Limonene also enhanced the relative expression levels of pathogenesis related (PR) genes, including NPR1, PR1, and PR5, which were upregulated 3.84-fold, 1.86-fold and 1.71-fold, respectively. Limonene induced the accumulation of salicylic acid (SA), and increased the relative expression levels of genes related to SA biosynthesis (PAL) and reactive oxygen species (ROS) burst (RBOHB), which respectively increased by 2.76 times and 4.23 times higher than the control. Systemic acquired resistance (SAR) is an important plant immune defense against pathogen infection. The observed accumulation of SA, the enhancement of defense enzymes activity and the high-level expression of defense-related genes suggested that limonene may induce resistance to TMV in tobacco by activating SAR mediated by the SA signaling pathway. Furthermore, the experimental results demonstrated that the expression level of the chlorophyll biosynthesis gene POR1 was increased 1.72-fold compared to the control in tobacco treated with 800 µg/mL limonene, indicating that limonene treatment may increase chlorophyll content in tobacco. The results of pot experiment showed that 800 µg/mL limonene induced plant resistance against Sclerotinia sclerotiorum (33.33%), Phytophthora capsici (54.55%), Botrytis cinerea (50.00%). The bioassay results indicated that limonene provided broad-spectrum and long-lasting resistance to pathogen infection. Therefore, limonene has good development and utilization value, and is expected to be developed into a new botanical-derived anti-virus agent and plant immunity activator in addition to insecticides and fungicides.
Assuntos
Vírus do Mosaico do Tabaco , Limoneno/farmacologia , Ácido Salicílico/metabolismo , Nicotiana , Clorofila/metabolismo , Superóxido Dismutase/metabolismo , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genéticaRESUMO
The essential oil of Cinnamomum camphora is the most widely consumed and used spice in the world today. It has therapeutic effects in medicine and has been shown to have good antibacterial and bacteriostatic effects in agriculture. This study found that C. camphora oil significantly induced plant disease resistance activity. Linalool, its main active component, significantly induced plant disease resistance activity (67.49% at a concentration of 800 µg/ml) over the same concentration of the chitosan oligosaccharide positive control but had no direct effect on tobacco mosaic virus (TMV). In this study of its antiviral mechanism, linalool induced hypersensitive reaction (HR); the overexpression of related defense enzymes SOD, CAT, POD, and PAL; and the accumulation of H2O2 and SA content in N. glutinosa. Besides, linalool induced crops resistance against Colletotrichum lagenarium, Botrytis cinerea, Sclerotinia sclerotiorum, and Phytophthora capsica. Taken together, the anti-TMV mechanism of linalool involved the induction of plant disease resistance through activation of a plant immune response mediated by salicylic acid. Linalool-induced plant disease resistance activity has a long duration, broad spectrum, and rich resources; linalool thus has the potential to be developed as a new plant-derived antiviral agent and plant immune activator.
Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Nicotiana , Resistência à Doença/genética , Peróxido de Hidrogênio , PlantasRESUMO
We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance. We found that the photodegradation of these acceptors originates from two distinct pathways: electrocyclic photoisomerization and Diels-Alder cycloaddition of singlet oxygen. These mechanisms are of general significance to most non-fullerene acceptors, and the photostability depends strongly on the molecular structure. Placement of furans next to the acceptor termini leads to better photostability, well-balanced hole/electron transport, and significantly improved device performance. Methylfuran as the linker offers the best photostability and power conversion efficiency (>14 %), outperforming all furan-based acceptors reported to date and all indacenodithiophene-based acceptors. Our findings show the possibility of photostable furan-based alternatives to the currently omnipresent thiophene-based photovoltaic materials.
RESUMO
Based on metabolomics, to study the mechanism of Radix Wikstroemia indica (RWI) "Sweat soaking method" processing detoxification. The raw drug group and processed products was given raw RWI and processed RWI respectively by gavage. The control group was given the same amount of 1% sodium carboxy methyl cellulose distilled water by gavage. After 7 days of continuous gavage, blood samples were collected. The blood samples of rats in each group were analyzed by 1H-NMR technology to explore the changes of endogenous metabolism and the possible metabolic pathways to rats before and after processing. Compared with the control group, the raw RWI could significantly reduce 16 metabolites and increase 10 metabolites. The processed RWI can increase the levels of most metabolites that decrease to the raw RWI, such as 13 metabolites such as alanine, L-glutamine, L-valine, L-serine, betaine and glutamic acid; At the same time, the metabolites that increased in the level of crude products were down-regulated, such as asparagine, lactic acid, 2-hydroxyisobutyric acid, sucrose, glucose and D-glucose. Compared with raw products, RWI treated with "Sweat soaking method" can reversely regulate or reduce amino acid, choline metabolism, energy and carbohydrate metabolism, thereby reducing hepatotoxicity and nephrotoxicity.
RESUMO
The primary somatosensory cortex (S1) plays a critical role in processing multiple somatosensations, but the mechanism underlying the representation of different submodalities of somatosensation in S1 remains unclear. Using in vivo two-photon calcium imaging that simultaneously monitors hundreds of layer 2/3 pyramidal S1 neurons of awake male mice, we examined neuronal responses triggered by mechanical, thermal, or pruritic stimuli. We found that mechanical, thermal, and pruritic stimuli activated largely overlapping neuronal populations in the same somatotopic S1 subregion. Population decoding analysis revealed that the local neuronal population in S1 encoded sufficient information to distinguish different somatosensory submodalities. Although multimodal S1 neurons responding to multiple types of stimuli exhibited no spatial clustering, S1 neurons preferring mechanical and thermal stimuli tended to show local clustering. These findings demonstrated the coding scheme of different submodalities of somatosensation in S1, paving the way for a deeper understanding of the processing and integration of multimodal somatosensory information in the cortex.SIGNIFICANCE STATEMENT Cortical processing of somatosensory information is one of the most fundamental aspects in cognitive neuroscience. Previous studies mainly focused on mechanical sensory processing within the rodent whisking system, but mechanisms underlying the coding of multiple somatosensations remain largely unknown. In this study, we examined the representation of mechanical, thermal, and pruritic stimuli in S1 by in vivo two-photon calcium imaging of awake mice. We revealed a multiplexed representation for multiple somatosensory stimuli in S1 and demonstrated that the activity of a small population of S1 neurons is capable of decoding different somatosensory submodalities. Our results elucidate the coding mechanism for multiple somatosensations in S1 and provide new insights that improve the present understanding of how the brain processes multimodal sensory information.