Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Exp Med Biol ; 1445: 179-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967760

RESUMO

Acute myeloid leukaemia (AML) is a collection of genetically diverse diseases characterised by abnormal proliferation of immature haematopoietic cells and disruption of normal haematopoiesis. Myeloid cells and lymphocytes originate from different haematopoietic precursors within the bone marrow. It has been traditionally assumed that myeloid cells cannot produce immunoglobulin (Ig), a marker of B cells and plasma cells. However, in recent years, all five Ig classes have been detected in CD34+ haematopoietic stem cells, mature monocytes and neutrophils, differentiated macrophages and tumour-associated macrophages, acute myeloid leukaemia cell lines, as well as myeloblasts of AML. The rearranged V(D)J sequences exhibit unique restricted or biased V gene usage and evidence of somatic mutation. Furthermore, AML-derived Igs could promote cell proliferation, induce apoptosis, and enhance migration. Elevated levels of Ig expression predict inferior clinical outcomes. These findings indicate that AML-derived Ig plays a role in AML pathogenesis and progression, and could serve as a novel biomarker for risk stratification, disease monitoring, and targeted therapy. In this chapter, we provide a comprehensive review of recent literature on the expression, function, and significance of non B cell-derived Ig in the haematological system, with a focus on AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Animais
2.
Nat Nanotechnol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499860

RESUMO

Bone is the most common site of metastasis, and although low proliferation and immunoediting at the early stage make existing treatment modalities less effective, the microenvironment-inducing behaviour could be a target for early intervention. Here we report on a spatiotemporal coupling interaction between tumour cells and osteoclasts, and named the tumour-associated osteoclast 'tumasteoclast'-a subtype of osteoclasts in bone metastases induced by tumour-migrasome-mediated cytoplasmic transfer. We subsequently propose an in situ decoupling-killing strategy in which tetracycline-modified nanoliposomes encapsulating sodium bicarbonate and sodium hydrogen phosphate are designed to specifically release high concentrations of hydrogen phosphate ions triggered by tumasteoclasts, which depletes calcium ions and forms calcium-phosphorus crystals. This can inhibit the formation of migrasomes for decoupling and disrupt cell membrane for killing, thereby achieving early prevention of bone metastasis. This study provides a research model for exploring tumour cell behaviour in detail and a proof-of-concept for behaviour-targeting strategy.

3.
Front Biosci (Landmark Ed) ; 28(2): 40, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36866541

RESUMO

BACKGROUND: Antibodies induced by viral infection can not only prevent subsequent virus infection, but can also mediate pathological injury following infection. Therefore, understanding the B-cell receptor (BCR) repertoire of either specific neutralizing or pathological antibodies from patients convalescing from Coronavirus disease 2019 (COVID-19) infection is of benefit for the preparation of therapeutic or preventive antibodies, and may provide insight into the mechanisms of COVID-19 pathological injury. METHODS: In this study, we used a molecular approach of combining 5' Rapid Amplification of cDNA Ends (5'-RACE) with PacBio sequencing to analyze the BCR repertoire of all 5 IgH and 2 IgL genes in B-cells harvested from 35 convalescent patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS: We observed numerous BCR clonotypes within most COVID-19 patients, but not in healthy controls, which validates the association of the disease with a prototypical immune response. In addition, many clonotypes were found to be frequently shared between different patients or different classes of antibodies. CONCLUSIONS: These convergent clonotypes provide a resource to identify potential therapeutic/prophylactic antibodies, or identify antibodies associated with pathological effects following infection with SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Receptores de Antígenos de Linfócitos B/genética , Anticorpos , Linfócitos B
4.
Biomaterials ; 285: 121519, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35552116

RESUMO

Volumetric muscle loss (VML) healing is often complicated by fibrosis, which impairs muscle regeneration and function. Adjusting mechanical stress in the repair environment may modulate immunity and reduce fibrosis. In this study, we aimed to create a biomaterial with suitable tension conditions and bidirectional tissue-inducing abilities to prevent fibrosis thus promote muscle regeneration and induce aponeurosis-like structures to restore muscle force transmission. A protocol was developed to manufacture decellularized muscle aponeurosis (D-MA) patches with an intact extracellular matrix (ECM) and low cytotoxicity. D-MA optimized the mechanical stress distribution in muscle injury sites and decreased the number of proinflammatory macrophages and myofibroblasts, thereby attenuating muscle fibrosis. Muscle and aponeurosis ECM environments had different microstructures and mechanical properties, which specifically enhanced stem cell differentiation into muscle-like cells on muscle ECM and tenocyte-like cells on aponeurosis ECM in vitro. Four weeks after orthotopic implantation, the biphasic muscle-aponeurosis-like tissue was successfully regenerated by the D-MA scaffold. The regenerated muscle fibers in D-MA were more abundant than those in the fibrotic decellularized muscle (D-M) scaffold. D-MA can be used to repair abdominal defects, which significantly improves the repair outcomes. Our results suggest D-MA as a promising material for VML repair.


Assuntos
Parede Abdominal , Doenças Musculares , Matriz Extracelular , Fibrose , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , Regeneração , Estresse Mecânico , Alicerces Teciduais/química
5.
Biology (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205028

RESUMO

Immunoglobulin (Ig) is known as a hallmark of B-lymphocytes exerting antibody functions. However, our previous studies demonstrated that myeloblasts from acute myeloid leukemia (AML) patients could also express Ig with distinct roles. Here, we quantified Ig (IGHG and IGK) transcripts by real-time PCR and performed a comprehensive analysis of Ig repertoire (both heavy chains and light chains) in AML blasts. We found that Ig was frequently expressed by AML blasts. A higher level of AML-derived IGHG expression correlated with a significantly shorter disease-free survival. Next-generation sequencing revealed dysregulated transcripts of all five Ig classes (IGHA, IGHD, IGHE, IGHG, and IGHM) and two Ig types (IGK and IGL) in AML. VH-D-JH rearrangements in myeloblasts were biased with individual specificity rather than generally diverse as in B-cells. Compared to AML-derived IgH, AML-derived IGK was more conserved among different AML samples. The frequently shared Vκ-Jκ patterns were IGKV3-20*01/IGKJ1*01, IGKV2D-28*01/IGKJ1*01, and IGKV4-1*01/IGKJ1*01. Moreover, AML-derived IGK was different from classical IGK in B-cells for the high mutation rates and special mutation hotspots at serine codons. Findings of the distinct Ig repertoire in myeloblasts may facilitate the discovery of a new molecular marker for disease monitoring and target therapy.

6.
Sci Adv ; 8(26): eabn3333, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35767605

RESUMO

Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species-responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell-related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.


Assuntos
Osso e Ossos , Osteoclastos , Fator 6 Associado a Receptor de TNF
7.
Dev Cell ; 57(20): 2365-2380.e8, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36243012

RESUMO

Gasdermin D (GSDMD)-mediated pyroptosis induces immunogenic cell death and promotes inflammation. However, the functions of GSDMD in tissue homeostasis remain unclear. Here, we identify a physiological function of GSDMD in osteoclasts via a non-lytic p20-generated protein, which prevents bone loss to maintain bone homeostasis. In the late stage of RANKL-induced osteoclastogenesis, GSDMD underwent cleavage, which is dependent on RIPK1 and caspase-8/-3, to yield this p20 product. Gsdmd-deficient osteoclasts showed normal differentiation but enhanced bone resorption with excessive lysosomal activity. Mice with complete or myeloid-specific Gsdmd deletion exhibited increased trabecular bone loss and more severe aging/ovariectomy-induced osteoporosis. GSDMD p20 was preferentially localized to early endosomes and limited endo-lysosomal trafficking and maturation, relying on its oligomerization and control of phosphoinositide conversion by binding to phosphatidylinositol 3-phosphate (PI(3)P). We have thus identified an anti-osteoclastic function of GSDMD as a checkpoint for lysosomal maturation and secretion and linked this to bone homeostasis and endosome-lysosome biology.


Assuntos
Reabsorção Óssea , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Feminino , Camundongos , Caspase 8/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos de Fosfatidilinositol
8.
Genes (Basel) ; 12(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806147

RESUMO

Most glomerular diseases are associated with inflammation caused by deposited pathogenic immunoglobulins (Igs), which are believed to be produced by B cells. However, our previous study indicated that the human podocyte cell line can produce IgG. In this study, we aimed to confirm the transcripts and characterize the repertoires of Igs in primary podocytes at single cell level. First, single-cell RNA sequencing of cell suspensions from "normal" kidney cortexes by a 10xGenomics Chromium system detected Ig transcripts in 7/360 podocytes and Ig gene segments in 106/360 podocytes. Then, we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in 48 single podocytes and found that five classes of Ig heavy chains were amplified in podocytes. Four-hundred and twenty-nine VHDJH rearrangement sequences were analyzed; podocyte-derived Igs exhibited classic VHDJH rearrangements with nucleotide additions and somatic hypermutations, biased VH1 usage and restricted diversity. Moreover, compared with the podocytes from healthy control that usually expressed one class of Ig and one VHDJH pattern, podocytes from patients expressed more classes of Ig, VHDJH patterns and somatic hypermutations. These findings suggested that podocytes can express Igs in normal condition and increase diversity in pathological situations.


Assuntos
Rearranjo Gênico , Cadeias J de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Cadeias delta de Imunoglobulina/genética , Nefropatias/genética , Podócitos/patologia , Análise de Célula Única/métodos , Sequência de Bases , Estudos de Casos e Controles , Humanos , Nefropatias/patologia , Podócitos/metabolismo , Homologia de Sequência do Ácido Nucleico
9.
Front Cell Dev Biol ; 9: 773344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926460

RESUMO

The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.

10.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831038

RESUMO

Immunoglobulin (Ig), a characteristic marker of B cells, is a multifunctional evolutionary conserved antibody critical for maintaining tissue homeostasis and developing fully protective humoral responses to pathogens. Increasing evidence revealed that Ig is widely expressed in non-immune cells; moreover, Ig produced by different lineages cells plays different biological roles. Recently, it has been reported that monocytes or macrophages also express Ig. However, its function remains unclear. In this study, we further identified that Ig, especially Ig mu heavy chain (IgM), was mainly expressed in mice macrophages. We also analyzed the IgM repertoire characteristic in macrophages and found that the VHDJH rearrangements of macrophage-derived IgM showed a restricted and conservative VHDJH pattern, which differed from the diverse VHDJH rearrangement pattern of the B cell-expressed IgM in an individual. Functional investigation showed that IgM knockdown significantly promoted macrophage migration and FAK/Src-Akt axis activation. Furthermore, some inflammatory cytokines such as MCP1 and IL-6 increased after IgM knockdown under LPS stimulation. A mechanism study revealed that the IgM interacted with binding immunoglobulin protein (Bip) and inhibited inflammatory response and unfolded protein response (UPR) activation in macrophages. Our data elucidate a previously unknown function of IgM in macrophages that explains its ability to act as a novel regulator of Bip to participate in endoplasmic reticulum stress and further regulate the inflammatory response.


Assuntos
Estresse do Retículo Endoplasmático , Imunoglobulina M/imunologia , Inflamação/imunologia , Macrófagos/metabolismo , Envelhecimento/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Quinases da Família src/metabolismo
11.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760139

RESUMO

Proximal tubular epithelial cells (PTECs) have innate immune characteristics, and produce proinflammatory factors, chemokines and complement components that drive epithelial­mesenchymal transition (EMT). Our previous studies revealed that human mesangial cells and podocytes were able to synthesize and secrete immunoglobulin (Ig)A and IgG, respectively. The aim of the present study was to evaluate the expression of Igs in PTECs. Firstly, IgG was detected in the cytoplasm, the cell membrane and the lumen of PTECs in the normal renal cortex by immunohistochemistry. Secondly, Igγ gene transcription and V(D)J recombination were detected in single PTECs by nested PCR and Sanger sequencing. Thirdly, Igγ, Igκ and Igλ were clearly detected in an immortalized PTEC line (HK­2) by immunostaining and western blotting, in which RP215 (an antibody that predominantly binds to non­B cell­derived IgG) was used. In addition, Igγ, Igκ and Igλ gene transcripts, conservative V(D)J recombination in the Igγ variable region, recombination activating gene 1/2 and activation­induced cytidine deaminase were all detected in HK­2 cells. These data suggested that PTECs may express IgG in a similar manner to B cells. Furthermore, IgG expression was upregulated by TGF­ß1 and may be involved in EMT.


Assuntos
Fibrose/genética , Imunoglobulina G/genética , Túbulos Renais Proximais/imunologia , Fator de Crescimento Transformador beta1/genética , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose/patologia , Regulação da Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Túbulos Renais Proximais/patologia , Podócitos/imunologia , Podócitos/metabolismo , RNA Mensageiro/genética , Análise de Célula Única
12.
Sci Rep ; 10(1): 19657, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184300

RESUMO

Increasing evidence has confirmed that immunoglobulins (Igs) can be expressed in non-B cells. Our previous work demonstrated that mesangial cells and podocytes express IgA and IgG, respectively. The aim of this work was to reveal whether proximal tubular epithelial cells (PTECs) express Igs. High-throughput single-cell RNA sequencing (scRNA-seq) detected Igs in a small number of PTECs, and then we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in PTECs. We sorted PTECs from the normal renal cortex of two patients with renal cancer by FACS and further confirmed their identify by LRP2 gene expression. Only the transcripts of the IgG heavy chain were successfully amplified in 91/111 single PTECs. We cloned and sequenced 469 VHDJH transcripts from 91 single PTECs and found that PTEC-derived IgG exhibited classic VHDJH rearrangements with nucleotide additions at the junctions and somatic hypermutations. Compared with B cell-derived IgG, PTEC-derived IgG displayed less diversity of VHDJH rearrangements, predominant VH1-24/DH2-15/JH4 sequences, biased VH1 usage, centralized VH gene segment location at the 3' end of the genome and non-Gaussian distribution of the CDR3 length. These results demonstrate that PTECs can express a distinct IgG repertoire that may have implications for their role in the renal tubular epithelial-mesenchymal transition.


Assuntos
Células Epiteliais/metabolismo , Rearranjo Gênico , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Túbulos Renais Proximais/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Humanos , Imunoglobulina G/metabolismo , Túbulos Renais Proximais/imunologia , Transcriptoma
13.
Cell Discov ; 5: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839985

RESUMO

Antibodies have a common structure consisting of two identical heavy (H) and two identical light (L) chains. It is widely accepted that a single mature B cell produces a single antibody through restricted synthesis of only one VHDJH (encoding the H-chain variable region) and one VLJL (encoding the L-chain variable region) via recombination. Naive B cells undergo class-switch recombination (CSR) from initially producing membrane-bound IgM and IgD to expressing more effective membrane-bound IgG, IgA, or IgE when encountering antigens. To ensure the "one cell - one antibody" paradigm, only the constant region of the H chain is replaced during CSR, while the rearranged VHDJH pattern and the L chain are kept unchanged. To define those long-standing classical concepts at the single-cell transcriptome level, we applied the Chromium Single-Cell Immune Profiling Solution and Sanger sequencing to evaluate the Ig transcriptome repertoires of single B cells. Consistent with the "one cell - one antibody" rule, most of the B cells showed one V(D)J recombination pattern. Intriguingly, however, two or more VHDJH or VLJL recombination patterns of IgH chain or IgL chain were also observed in hundreds to thousands of single B cells. Moreover, each Ig class showed unique VHDJH recombination pattern in a single B-cell expressing multiple Ig classes. Together, our findings reveal an unprecedented presence of multi-Ig specificity in some single B cells, implying regulation of Ig gene rearrangement and class switching that differs from the classical mechanisms of both the "one cell - one antibody" rule and CSR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA