Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38588678

RESUMO

Super-resolution ultrasound (SRUS) through localising and tracking of microbubbles (MBs) can achieve sub-wavelength resolution for imaging microvascular structure and flow dynamics in deep tissuein vivo. The technique assumes that signals from individual MBs can be isolated and localised accurately, but this assumption starts to break down when the MB concentration increases and the signals from neighbouring MBs start to interfere. The aim of this study is to gain understanding of the effect of MB-MB distance on ultrasound images and their localisation. Ultrasound images of two MBs approaching each other were synthesised by simulating both ultrasound field propagation and nonlinear MB dynamics. Besides the distance between MBs, a range of other influencing factors including MB size, ultrasound frequency, transmit pulse sequence, pulse amplitude and localisation methods were studied. The results show that as two MBs approach each other, the interference fringes can lead to significant and oscillating localisation errors, which are affected by both the MB and imaging parameters. When modelling a clinical linear array probe operating at 6 MHz, localisation errors between 20 and 30µm (∼1/10 wavelength) can be generated when MBs are ∼500µm (2 wavelengths or ∼1.7 times the point spread function (PSF)) away from each other. When modelling a cardiac probe operating at 1.5 MHz, the localisation errors were as high as 200µm (∼1/5 wavelength) even when the MBs were more than 10 wavelengths apart (2.9 times the PSF). For both frequencies, at smaller separation distances, the two MBs were misinterpreted as one MB located in between the two true positions. Cross-correlation or Gaussian fitting methods were found to generate slightly smaller localisation errors than centroiding. In conclusion, caution should be taken when generating and interpreting SRUS images obtained using high agent concentration with MBs separated by less than 1.7 to 3 times the PSF, as significant localisation errors can be generated due to interference between neighbouring MBs.


Assuntos
Microbolhas , Ultrassonografia , Ultrassonografia/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
Chem Asian J ; : e202400611, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995858

RESUMO

Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D to 3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38109244

RESUMO

Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.


Assuntos
Microvasos , Tomografia Computadorizada por Raios X , Animais , Coelhos , Ultrassonografia/métodos , Imagens de Fantasmas , Microvasos/diagnóstico por imagem , Microbolhas
4.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702285

RESUMO

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Assuntos
Imageamento Tridimensional , Ultrassonografia , Coelhos , Animais , Humanos , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Desenho de Equipamento , Imagens de Fantasmas , Pele/diagnóstico por imagem , Estudos de Viabilidade
5.
IEEE Trans Biomed Eng ; PP2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990741

RESUMO

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required. METHOD: This study proposed 3-D acoustic wave sparsely activated localization microscopy (AWSALM) using PCCAs and a 128+128 row-column-addressed (RCA) array, which offers ultrafast acquisition with over 6 times larger FOV and 4 times reduction in hardware complexity than a 1024-element matrix array. We first validated this method on an in-vitro microflow phantom and subsequently demonstrated non-invasively on a rabbit kidney in-vivo. RESULTS: Our results show that 3-D AWSALM images of the phantom covering a 25×25×40 mm 3 volume can be generated under 5 seconds with an 8 times resolution improvement over the system point spread function. The full volume of the rabbit kidney can be covered to generate 3-D microvascular structure, flow speed and direction super-resolution maps under 15 seconds, combining the large FOV of RCA with the high resolution of SRUS. Additionally, 3-D AWSALM is selective and can visualize the microvasculature within the activation volume and downstream vessels in isolation. Sub-sets of the kidney microvasculature can be imaged through selective activation of PCCAs. CONCLUSION: Our study demonstrates large FOV 3-D AWSALM using an RCA probe. SIGNIFICANCE: 3-D AWSALM offers an unique in-vivo imaging tool for fast, selective and large FOV vascular flow mapping.

6.
Nat Biomed Eng ; 8(6): 689-700, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710839

RESUMO

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.


Assuntos
Microcirculação , Humanos , Animais , Suínos , Miocárdio/patologia , Microvasos/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Ecocardiografia/métodos , Hemodinâmica , Microscopia/métodos , Masculino , Feminino , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade
7.
IEEE Trans Med Imaging ; 43(8): 2970-2987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607705

RESUMO

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.


Assuntos
Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador , Ultrassonografia , Ultrassonografia/métodos , Camundongos , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Linfonodos/diagnóstico por imagem , Microbolhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA