Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192122

RESUMO

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Assuntos
Flavonoides , Glicosídeos , Lignanas , Folhas de Planta , Folhas de Planta/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Animais , Camundongos , Células PC12 , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Estrutura Molecular , Lignanas/química , Lignanas/farmacologia , Lignanas/isolamento & purificação , Ratos , Células RAW 264.7 , Vaccinium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Iridoides/química , Iridoides/farmacologia , Iridoides/isolamento & purificação , Glicosídeos Iridoides/química , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/isolamento & purificação , Espécies Reativas de Oxigênio , Picratos/farmacologia
2.
BMC Plant Biol ; 22(1): 43, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062882

RESUMO

In desert habitats, sand burial is an important factor affecting germination of plant seeds and seedling growth. Xanthium spinosum has strong adaptability in arid desert areas, and is a common malignant invasive plant in Xinjiang, China. The effects of different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds was significantly different at sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased. Emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1-3 cm, and high burial depth (5-9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


Assuntos
Areia , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Xanthium/crescimento & desenvolvimento , Biomassa , China , Germinação/fisiologia , Espécies Introduzidas
3.
Acta Pharmacol Sin ; 42(5): 824-831, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32901086

RESUMO

Clinical tracking of chimeric antigen receptor (CAR) T cells in vivo by positron emission tomography (PET) imaging is an area of intense interest. But the long-lived positron emitter-labeled CAR T cells stay in the liver and spleen for days or even weeks. Thus, the excessive absorbed effective dose becomes a major biosafety issue leading it difficult for clinical translation. In this study we used 68Ga, a commercially available short-lived positron emitter, to label CAR T cells for noninvasive cell tracking in vivo. CAR T cells could be tracked in vivo by 68Ga-PET imaging for at least 6 h. We showed a significant correlation between the distribution of 89Zr and 68Ga-labeled CAR T cells in the same tissues (lungs, liver, and spleen). The distribution and homing behavior of CAR T cells at the early period is highly correlated with the long-term fate of CAR T cells in vivo. And the effective absorbed dose of 68Ga-labeled CAR T cells is only one twenty-fourth of 89Zr-labeled CAR T cells, which was safe for clinical translation. We conclude the feasibility of 68Ga instead of 89Zr directly labeling CAR T cells for noninvasive tracking of the cells in vivo at an early stage based on PET imaging. This method provides a potential solution to the emerging need for safe and practical PET tracer for cell tracking clinically.


Assuntos
Rastreamento de Células/métodos , Compostos Radiofarmacêuticos/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Linfoma de Burkitt/terapia , Linhagem Celular Tumoral , Estudos de Viabilidade , Radioisótopos de Gálio/química , Humanos , Imunoterapia Adotiva , Oxiquinolina/química , Oxiquinolina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Compostos Radiofarmacêuticos/farmacocinética , Linfócitos T/química , Zircônio/química
4.
Biomacromolecules ; 20(3): 1455-1463, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30764611

RESUMO

Nonconjugated red fluorescent polymers have been increasingly studied to improve the biocompatibility and penetration depth over conventional fluorescent materials. However, the accessibility of such polymers remains challenging due to the scarcity of nonconjugated fluorophores and lacking relevant mechanism of red-shifted fluorescence. Herein, we discovered that the combination of hydrogen bonding and π-π stacking interactions provides nonconjugated poly(amide-imide) with a large bathochromic shift (>100 nm) from blue-green fluorescence to red emission. The amphiphilic PEGylated poly(amide-imide) derived from in situ PEGylation self-assembled into nanovesicles in water, which isolated the aminosuccinimide fluorophore from the solvents and suppressed the hydrogen bonds formation between aminosuccinimide fluorophores and water. Therefore, the fluorescence of PEGylated poly(amide-imide) in water was soundly retained. Furthermore, the strong hydrogen bonding and hydrophobic interactions with water provided PEGylated poly(amide-imide) with a reversible thermoresponsiveness and presented a concentration-dependent behavior. Finally, accompanied by the excellent biostability and photostability, PEGylated poly(amide-imide) exhibited as a good candidate for cell imaging.


Assuntos
Amidas/química , Corantes Fluorescentes/química , Imidas/química , Polímeros/química , Fluorescência , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
5.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775357

RESUMO

Carbon dioxide is commonly used as one of the significant environmental factors to control pileus expansion during mushroom cultivation. However, the pileus expansion mechanism related to CO2 is still unknown. In this study, the young fruiting bodies of a popular commercial mushroom Flammulina filiformis were cultivated under different CO2 concentrations. In comparison to the low CO2 concentration (0.05%), the pileus expansion rates were significantly lower under a high CO2 concentration (5%). Transcriptome data showed that the up-regulated genes enriched in high CO2 concentration treatments mainly associated with metabolism processes indicated that the cell metabolism processes were active under high CO2 conditions. However, the gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with cell division processes contained down-regulated genes at both 12 h and 36 h under a high concentration of CO2. Transcriptome and qRT-PCR analyses demonstrated that a high CO2 concentration had an adverse effect on gene expression of the ubiquitin-proteasome system and cell cycle-yeast pathway, which may decrease the cell division ability and exhibit an inhibitory effect on early pileus expansion. Our research reveals the molecular mechanism of inhibition effects on early pileus expansion by elevated CO2, which could provide a theoretical basis for a CO2 management strategy in mushroom cultivation.


Assuntos
Dióxido de Carbono/farmacologia , Divisão Celular , Flammulina/genética , Carpóforos/genética , Proteínas Fúngicas/genética , Transcriptoma/efeitos dos fármacos , Biologia Computacional , Flammulina/efeitos dos fármacos , Flammulina/crescimento & desenvolvimento , Carpóforos/efeitos dos fármacos , Carpóforos/crescimento & desenvolvimento , Perfilação da Expressão Gênica
6.
Int J Mol Sci ; 17(9)2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27626406

RESUMO

Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2(-)) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2(-) mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses.


Assuntos
Peróxido de Hidrogênio/farmacologia , Proteínas Monoméricas de Ligação ao GTP/genética , Estresse Fisiológico , Volvariella/enzimologia , Temperatura Baixa , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Família Multigênica , Oniocompostos/farmacologia , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Volvariella/genética , Proteína ran de Ligação ao GTP/genética
7.
Int J Mol Sci ; 17(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26784168

RESUMO

As the first defence for cells to counteract the toxicity of active oxygen, superoxide dismutase (SOD) plays an important role in the response of living organisms to stress and cell differentiation. One extracellular Cu-ZnSOD (ecCu-ZnSOD), and two MnSODs, were identified based on the Volvariella volvacea genome sequence. All three genes have complicated alternative splicing modes during transcription; only when the fourth intron is retained can the Vv_Cu-Znsod1 gene be translated into a protein sequence with SOD functional domains. The expression levels of the three sod genes in the pilei are higher than in the stipe. The Vv_Cu-Znsod1 and the Vv_Mnsod2 are co-expressed in different developmental stages of the fruiting body, with the highest level of expression in the pilei of the egg stage, and they show a significant, positive correlation with the efficiency of karyogamy, indicating the potential role of these two genes during karyogamy. The expression of the ecCu-Znsod and two Vv_Mnsod genes showed a significant up-regulated when treated by cold stress for one hour; however, the lack of the intracellular Cu-ZnSOD encoding gene (icCu-Znsod) and the special locus of the ecCu-Znsod gene initiation codon suggested a possible reason for the autolysis phenomenon of V. volvacea in cold conditions.


Assuntos
Resposta ao Choque Frio , Carpóforos/enzimologia , Proteínas Fúngicas/metabolismo , Superóxido Dismutase/metabolismo , Volvariella/enzimologia , Sequência de Aminoácidos , Carpóforos/metabolismo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Superóxido Dismutase/química , Superóxido Dismutase/genética , Volvariella/genética , Volvariella/crescimento & desenvolvimento
8.
Macromol Rapid Commun ; 35(3): 298-302, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24339371

RESUMO

Though great attention has been paid in constructing well-defined nano-structures via the self-assembly of amphiphilic macromolecules, the self-assembly of non-amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature-responsive PEG-based branched polymer with disulfide bonds in its backbone via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(2-methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N'-cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self-assembly behaviors of this branched poly-mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.


Assuntos
Nanocápsulas/química , Polímeros/química , Metacrilatos/química , Tamanho da Partícula , Polietilenoglicóis/química , Polimerização , Polímeros/síntese química , Temperatura
9.
Macromol Rapid Commun ; 35(6): 649-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24497329

RESUMO

A new and easy method of stimuli-triggered growth and removal of a bioreducible nanoshell on nanoparticles is reported. The results show that pH or temperature could induce the aggregation of disulfide-contained branched polymers at the surface of nanoparticles; subsequently, the aggregated polymers could undergo intermolecular disulfide exchange to cross-link the aggregated polymers, forming a bioreducible polymer shell around nanoparticles. When these nanoparticles with a polymer shell are treated with glutathione (GSH) or d,l-dithiothreitol (DTT), the polymer shell could be easily removed from the nanoparticles. The potential application of this method is demonstrated by easily growing and removing a bioreducible shell from liposomes, and improvement of in vivo gene transfection activity of liposomes with a bioreducible PEG shell.


Assuntos
Nanopartículas/química , Nanoconchas/química , Polímeros/química , Tamanho da Partícula
10.
Insect Sci ; 30(1): 197-207, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35499984

RESUMO

The potato tuber moth, Phthorimaea operculella, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage and tubers. Entomopathogenic fungi that colonize plants as endophytes have lethal and sublethal pathological effects on insect pests. We show that Beauveria bassiana colonizes the aerial parts of potato plants endophytically after inoculation through soil drenching. Endophytic B. bassiana persisted in potato foliage for more than 50 days postinoculation. Bioassays indicated that foliage of B. bassiana-inoculated potato plants were pathogenic against larvae of P. operculella. Sublethal experiments indicated that B. bassiana negatively affected the growth, development, and reproduction of P. operculella. Development experiments showed that the weight of P. operculella pupae reared on B. bassiana-colonized potato plants (4.25 mg) was significantly less than that of those reared on uninoculated control plants (8.89 mg). Compared with newly eclosed larvae fed on control plants, those fed on B. bassiana-inoculated plants had significantly lower survivorship, with only 17.8% developing to the adult stage. Oviposition of P. operculella females reared on B. bassiana endophytically colonized plants was significantly lower (35 eggs/female) than of those reared on uninoculated plants (115 eggs/female). This study demonstrates that endophytic B. bassiana can be a potential biological control agent for the control and management of P. operculella. Comparing pupal weights of P. operculella reared on potato plants inoculated with the B. bassiana strain GZGY-1-3 and on untreated control plants, pupae from the control plants were significantly heavier than those from treated plants.


Assuntos
Beauveria , Mariposas , Solanum tuberosum , Feminino , Animais , Endófitos , Virulência , Larva , Controle Biológico de Vetores
11.
Oxid Med Cell Longev ; 2023: 3602962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778207

RESUMO

The widespread use of therapeutic glucocorticoids has increased the incidences of glucocorticoid-induced osteoporosis (GIOP). Oxidative stress and mitochondrial dysfunction are major causes of GIOP; therefore, alleviation of excess oxidative stress in osteoblasts is a potential therapeutic strategy for osteoporosis. Exosomes derived from ADSCs (ADSCs-Exos), as novel cell-free therapeutics, can modulate various biological processes, such as immunomodulation, reduce oxidative damage, and promote tissue repair as well as regeneration. In this study, ADSCs-Exos restored the viability and osteogenic potential of MC3T3-E1 cells by attenuating apoptosis, oxidative damage, intracellular ROS generation, and mitochondrial dysfunction. Moreover, after pretreatment with ADSCs-Exos, Nrf2 expressions were upregulated in Dex-stimulated osteoblasts. Inhibitory assays showed that silencing Nrf2 partially eliminated the protective effects of ADSCs-Exos. The rat model assays confirmed that ADSCs-Exos alleviated the Dex-induced increase in oxidation levels, restored bone mass of the distal femur, and increased the expressions of Nrf2 and osteogenic markers in bone tissues. Thus, ADSCs-Exos alleviated apoptosis and oxidative stress by regulating Nrf2/HO-1 expressions after Dex and prevented the development of GIOP in vivo.


Assuntos
Exossomos , Glucocorticoides , Células-Tronco Mesenquimais , Osteoporose , Animais , Ratos , Dexametasona/efeitos adversos , Exossomos/metabolismo , Glucocorticoides/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , Camundongos , Heme Oxigenase-1
12.
Macromol Rapid Commun ; 32(8): 660-4, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21480424

RESUMO

New water-soluble block copolymers of 2-(2-methoxyethoxy)ethyl methacrylate (MEO(2) MA), oligo(ethylene glycol) methacrylate (OEGMA), and N-(3-(dimethylamino) propyl) methacrylamide (DMAPMA) (poly(OEGMA-co-MEO(2) MA)-b-poly(DMAPMA)) were prepared via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. Selective quaternization of poly(DMAPMA) block gives poly(OEGMA-co-MEO(2) MA)-b-poly((3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate)-co-N-(3-(dimethylamino) propyl) methacrylamide), such block copolymer exhibits double thermo-responsive behavior in water, poly(MEO(2) MA-co-OEGMA) block shows a lower critical solution temperature (LCST), and poly((3-[N-(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate)-co-N-(3-(dimethylamino) propyl) methacrylamide) block shows a upper critical solution temperature (UCST). Both of LCST and UCST can be controlled: LCST could be tuned by the fraction of OEGMA units in poly(OEGMA-co-MEO(2) MA), and UCST was found to be dependent on the degree of quaternization (DQ).


Assuntos
Polímeros/síntese química , Metacrilatos/química , Polimerização , Polímeros/química , Temperatura
13.
Braz J Microbiol ; 51(1): 87-94, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31667800

RESUMO

NADPH oxidases are enzymes that have been reported to generate reactive oxygen species (ROS) in animals, plants and many multicellular fungi in response to environmental stresses. Six genes of the NADPH oxidase complex components, including vvnoxa, vvnoxb, vvnoxr, vvbema, vvrac1 and vvcdc24, were identified based on the complete genomic sequence of the edible fungus Volvariella volvacea. The number of vvnoxa, vvrac1, vvbema and vvcdc24 transcripts fluctuated with ageing, and the gene expression patterns of vvnoxa, vvrac1 and vvbema were significantly positively correlated. However, the expression of vvnoxb and vvnoxr showed no significant difference during ageing. In hyphae subjected to mechanical injury stress, both O2- and H2O2 concentrations were increased. The expression of vvnoxa, vvrac1, vvbema and vvcdc24 was substantially upregulated, but vvnoxb and vvnoxr showed no response to mechanical injury stress at the transcriptional level. Additionally, the transcription of vvnoxa, vvrac1, vvbema and vvcdc24 could be repressed when the intracellular ROS were eliminated by diphenyleneiodonium (DPI) chloride and reduced glutathione (GSH) treatments. These results indicated a positive feedback loop involving NADPH oxidase and intracellular ROS, which might be the reason for the oxidative burst during injury stress.


Assuntos
Regulação Fúngica da Expressão Gênica , Micélio/genética , NADPH Oxidases/genética , Volvariella/enzimologia , Volvariella/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Glutationa/farmacologia , Micélio/enzimologia , Oniocompostos/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Estresse Fisiológico
14.
PLoS One ; 15(10): e0239890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064719

RESUMO

Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.


Assuntos
Agaricales/genética , Evolução Molecular , Carpóforos/crescimento & desenvolvimento , Resposta ao Choque Térmico , Transcriptoma , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Sequência Conservada , Carpóforos/genética , Carpóforos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
15.
Methods Mol Biol ; 1943: 27-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838607

RESUMO

Bioreducible polycations, which possess disulfide linkages in the backbone, have emerged as promising nucleic acid delivery carriers due to their high stability in extracellular physiological condition and bioreduction-triggered release of the genetic material. Further benefits of bioreducible polycations include decreased cytotoxicity due to intracellular reducing environment in the cytoplasm that contains high levels of reducing molecules such as glutathione. Here, we describe the synthesis of bioreducible polycations with emphasis on methods to control their topology.


Assuntos
Portadores de Fármacos/síntese química , Poliaminas/síntese química , Polimerização , Citoplasma/química , Glutationa/química , Estrutura Molecular , Nanopartículas/química , Ácidos Nucleicos/genética , Oxirredução , Polieletrólitos , Polietilenoimina/química , Temperatura
16.
Shanghai Kou Qiang Yi Xue ; 23(3): 373-6, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25102888

RESUMO

PURPOSE: To apply research-based learning in education of bachelor intern students of stomatology and evaluate its role in promoting the comprehensive quality of the students. METHODS: Sixty students from grade 2007 and 2008 in school of stomatology, Wenzhou Medical University were enrolled in this study. Thirty of them were randomly selected into a group for research-based learning, while the others were taught with traditional teaching mode. Survey and assessment of the teaching effect was performed after the course. Independent t test was employed to evaluate the differences with SPSS16.0 software package. RESULTS: No significant difference of exam results was revealed between the two groups. Questionnaire survey showed a good evaluation for the teaching mode and the teachers in the group research-based learning, but the evaluation of mastering research capability was lower. CONCLUSIONS: Research-based learning mode promotes the study interest and comprehensive quality of the students. No evidence of interference with mastering clinical skills is disclosed.


Assuntos
Aprendizagem , Medicina Bucal/educação , Competência Clínica , Humanos , Estudantes , Inquéritos e Questionários
17.
J Phys Chem B ; 118(14): 3893-8, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24654571

RESUMO

Encapsulation of negatively charged plasmid DNA into a small-sized nanocapsule without using any condensing agent is very challenging up to now. Here we report a versatile method for encapsulating large-sized plasmid DNAs into small-sized bioreducible nanocapsules in which shearing force and surfactant can fold large-sized plasmid DNAs into small-sized emulsion droplets containing bioreducible branched polymers. Subsequently, temperature triggers the bioreducible branched polymers to aggregate and cross-link at the water/oil interface of the emulsion nanodroplet, forming a bioreducible shell around the nanodroplet. Thus, a small-sized nanocapsule (∼110 nm) containing large-sized plasmid DNA (∼1900 nm long) forms by removal of the surfactant.


Assuntos
Nanocápsulas/química , Plasmídeos/metabolismo , DNA/química , DNA/metabolismo , Emulsões/química , Células HeLa , Humanos , Óleos/química , Tamanho da Partícula , Plasmídeos/química , Polímeros/química , Temperatura , Transfecção , Água/química
18.
Biomater Sci ; 2(3): 390-398, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32481865

RESUMO

Disulfide-exchange was found to cross-link the polyplex of disulfide-containing poly(amido amine) and pDNA with heating of the polyplex solution over a short time. The cross-linked polyplexes based on disulfide-containing poly(amido amine) have excellent stability under physiological salt conditions, and have significantly enhanced transfection activity in the serum media compared to non-cross-linked polyplexes. In vivo, ICR mice were injected with the polyplex through the tail vein, the results show that the transfection efficiency of the cross-linked polyplex is higher than that of the non-cross-linked variety. Furthermore, the polyplex containing Cy5 labelled DNA was also injected into the mice to illustrate the stability and distribution of the polyplex, cross-linked polyplexes show a much brighter luminescence than the non-cross-linked ones. This method does not need a cross-linker or catalyst, and there are no impurities produced, it may be an elegant approach to resolve the dilemma of in vivo application of a DNA polyplex, with excellent stability whilst in circulation and a rapid unpacking of the polyplex inside the cells.

19.
Appl Spectrosc ; 67(11): 1242-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160875

RESUMO

Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.


Assuntos
Gases/análise , Lasers , Análise Espectral/métodos , Gases/química , Limite de Detecção , Gases em Plasma , Pressão , Análise Espectral/instrumentação
20.
Sci Rep ; 3: 2841, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24100948

RESUMO

In nature, a sapling can grow into a big tree under irradiation of sunlight. In chemistry, a similar concept that a small molecule only exposing to sunlight grows into a hyperbranched macromolecule has not been realized by now. The achievement of the concept will be fascinating and valuable for polymer synthesis wherein sunlight is inexpensive, abundant, renewable, and nonpolluting. Herein, we report a new strategy in which small monomers can directly grow into big hyperbranched macromolecule under irradiation of sunlight without any catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA