Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(37): e2403421121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226350

RESUMO

Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Mycobacterium tuberculosis , Rifampina , Rifampina/farmacologia , Rifampina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Modelos Moleculares , Adenilil Imidodifosfato/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252995

RESUMO

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Assuntos
Mycobacterium tuberculosis , Humanos , Galactanos , Pentosiltransferases/genética
3.
Plant Physiol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405162

RESUMO

Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear. Here, we identified AUXIN RESPONSE FACTOR 2 (FaARF2), which showed decreased expression with reduced auxin content in the receptacle, leading to increased ABA levels and accelerated ripening. Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays demonstrated that FaARF2 could bind to the AuxRE element in the promoter of 9-CIS-EPOXYCAROT-ENOID DIOXYGENASE 1 (FaNCED1), a key ABA biosynthetic gene, to suppress its transcriptional activity. Transiently overexpressing FaARF2 in the receptacles decreased FaNCED1 expression and ABA levels, resulting in inhibition of receptacle ripening and of development of quality attributes, such as pigmentation, aroma, and sweetness. This inhibition caused by overexpressing FaARF2 was partially recovered by the injection of exogenous ABA; conversely, transient silencing of FaARF2 using RNA interference produced the opposite results. The negative targeting of FaNCED1 by FaARF2 is a key link between auxin-ABA interactions and regulation of strawberry ripening.

4.
Chem Soc Rev ; 53(13): 6917-6959, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836324

RESUMO

Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.

5.
Nano Lett ; 24(20): 5929-5936, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655909

RESUMO

Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which have been diligently sought after for a long time. Construction of two-dimensional (2D) vdW multiferroics is a more exciting endeavor. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising the atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of a few atomic layers for multistage magnetic memories and brain-inspired in-memory computing.

6.
J Am Chem Soc ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39433374

RESUMO

In traditional hydrogenation, where H2 and substrates with unsaturated bonds are activated on the same catalyst (contact mode), competitive hydrogenation of multiple reducible groups often occurs. We employ an unbiased H-cell for selective hydrogenation of the nitro group when multiple reducible groups are present. The setup spatially separates H2 and nitroarenes into two chambers connected by a proton-exchange membrane, thus adding barriers for a Langmuir-Hinshelwood-type mechanism that is common in thermocatalytic hydrogenation. Through a unique proton/electron transfer pathway that is specific to nitro functional group reduction to hydroxylamine, side reactions like C═C, C═O, and C≡C bond hydrogenation are fully avoided. Using Pd/C for H2 activation, and CNT for selective proton/electron transfer to -NO2 groups while being inert to C≡C, C═C, and C═O hydrogenation, the system effectively eliminates the competitive hydrogenation, achieving 100% nitro-group reduction selectivity in the hydrogenation of various nitroarenes, in sharp contrast to negligible selectivity over the same catalysts in a batch reactor under contact mode. This device enables selectivity control in hydrogenation reactions, moving beyond the traditional focus on catalyst active site engineering.

7.
Small ; 20(28): e2310749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308118

RESUMO

The unfavorable morphology and high crystallization temperature (Tc) of inorganic perovskites pose a significant challenge to their widespread application in photovoltaics. In this study, an effective approach is proposed to enhance the morphology of cesium lead triiodide (CsPbI3) while lowering its Tc. By introducing dimethylammonium acetate into the perovskite precursor solution, a rapid nucleation stage is facilitated, and significantly enhances the crystal growth of the intermediate phase at low annealing temperatures, followed by a slow crystal growth stage at higher annealing temperatures. This results in a uniform and dense morphology in CsPbI3 perovskite films with enhanced crystallinity, simultaneously reducing the Tc from 200 to 150 °C. Applying this approach in positive-intrinsic-negative (p-i-n) inverted cells yields a high power conversion efficiency of 19.23%. Importantly, these cells exhibit significantly enhanced stability, even under stress at 85 °C.

8.
Small ; : e2405664, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358964

RESUMO

The integration of bio-based materials into triboelectric nanogenerators (TENGs) for energy harvesting from human body motions has sparked considerable research attention. Here, a silanated cellulose nanofibril (SCNF) aerogel is reported for structurally reliable TENGs and reversely compressible Taekwondo scoring sensors under repeated impacts. The preparation of the aerogel involves silanizing cellulose nanofibers (CNFs) with vinyltrimethoxysilane (VTMS), following by freeze-drying and post-heating treatment. The SCNF aerogel with crosslinked physico-chemical bonding and highly porous network is found to exhibit superior mechanical strength and reversible compressibility as well as enhanced water repellency and electron-donating ability. The TENG having a tribo-positive SCNF layer exhibits exceptional triboelectric performances, generating a voltage of 270 V, current of 11 µA, and power density of 401.1 mW m-2 under an applied force of 8 N at a frequency of 5 Hz. With its inherent merits in material composition, structural configuration, and device sensitivity, the SCNF TENG demonstrates the capability to seamlessly integrate into a Taekwondo protection gear, serving as an efficient self-powered sensor for monitoring hitting scores. This study highlights the significant potential of a facilely fabricated SCNF aerogel for the development of high-performance, bio-friendly, and cost-effective Bio-TENGs, enabling their application as self-powered wearable devices and sports engineering sensors.

9.
Chembiochem ; : e202400458, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037928

RESUMO

Asymmetric hydrogenation of alkene moieties is important for the synthesis of chiral molecules, but achieving high stereoselectivity remains a challenge. Biocatalysis using ene-reductases (EReds) offers a viable solution. However, the need for NAD(P)H cofactors limits large-scale applications. Here, we explored an electrochemical alternative for recycling flavin-containing EReds using methyl viologen as a mediator. For this, we built a bio-electrocatalytic setup with an H-type glass reactor cell, proton exchange membrane, and carbon cloth electrode. Experimental results confirm the mediator's electrochemical reduction and enzymatic consumption. Optimization showed increased product concentration at longer reaction times with better reproducibility within 4-6 h. We tested two enzymes, Pentaerythritol Tetranitrate Reductase (PETNR) and the Thermostable Old Yellow Enzyme (TOYE), using different alkene substrates. TOYE showed higher productivity for the reduction of 2-cyclohexen-1-one (1.20 mM h-1), 2-methyl-2-cyclohexen-1-one (1.40 mM h-1) and 2-methyl-2-pentanal (0.40 mM h-1), with enantiomeric excesses ranging from 11% to 99%. PETNR outperformed TOYE in terms of enantioselectivity for the reduction of 2-methyl-2-pentanal (ee 59±7% (S)). Notably, TOYE achieved promising results also in reducing ketoisophorone, a challenging substrate, with similar enantiomeric excess compared to published values using NADH.

10.
Acc Chem Res ; 56(5): 561-572, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36795591

RESUMO

ConspectusSingle-atom catalysts (SACs) offer unique advantages such as high (noble) metal utilization through maximum possible dispersion, large metal-support contact areas, and oxidation states usually unattainable in classic nanoparticle catalysis. In addition, SACs can serve as models for determining active sites, a simultaneously desired as well as elusive target in the field of heterogeneous catalysis. Due to the complexity of heterogeneous catalysts bearing a variety of different sites on metal particles and the respective support as well as at their interface, studies of intrinsic activities and selectivities remain largely inconclusive. While SACs could close this gap, many supported SACs remain intrinsically ill-defined due to complexities arising from the variety of different adsorption sites for atomically dispersed metals, hampering the establishment of meaningful structure-activity correlations. In addition to overcoming this limitation, well-defined SACs could even be utilized to shed light on fundamental phenomena in catalysis that remain ambiguous when studies are obscured by the complexity of heterogeneous catalysts.In this Account, we describe approaches to break down the complexity of supported single-atom catalysts through the careful choice of oxide supports with specific binding motives as well as the adsorption of well-defined ligands such as ionic liquids on single metal sites. An example of molecularly defined oxide supports is polyoxometalates (POMs), which are metal oxo clusters with precisely known composition and structure. POMs exhibit a limited number of sites to anchor atomically dispersed metals such as Pt, Pd, and Rh. Polyoxometalate-supported single-atom catalysts (POM-SACs) thus represent ideal systems for the in situ spectroscopic study of single atom sites during reactions as, in principle, all sites are identical and thus equally active in catalytic reactions. We have utilized this benefit in studies of the mechanism of CO and alcohol oxidation reactions as well as the hydro(deoxy)genation of various biomass-derived compounds. More so, the redox properties of polyoxometalates can be finely tuned by changing the composition of the support while keeping the geometry of the single-atom active site largely constant. We further developed soluble analogues of heterogeneous POM-SACs, opening the door to advanced liquid-phase nuclear magnetic resonance (NMR) and UV-vis techniques but, in particular, to electrospray ionization mass spectrometry (ESI-MS) which proves powerful in determining catalytic intermediates as well as their gas-phase reactivity. Employing this technique, we were able to resolve some of the long-standing questions about hydrogen spillover, demonstrating the broad utility of studies on defined model catalysts.

11.
Bioorg Med Chem Lett ; 112: 129932, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182737

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3ß inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3ß inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b-3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.


Assuntos
Desenho de Fármacos , Glicogênio Sintase Quinase 3 beta , Inibidores de Proteínas Quinases , Pirazóis , Ureia , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Humanos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Ureia/farmacologia , Ureia/análogos & derivados , Ureia/química , Ureia/síntese química , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Estrutura Molecular , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Relação Dose-Resposta a Droga
12.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
13.
BMC Psychiatry ; 24(1): 365, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750479

RESUMO

OBJECTIVES: This study aims to evaluate the safety and efficacy of escitalopram and sertraline in post-stroke depression (PSD) patients, to provide more reliable therapeutics for cardiovascular and psychiatric clinical practice. METHODS: We recruited 60 patients (aged 40-89 years old) with an ICD-10 diagnosis of PSD, who were then randomly assigned to two groups and treated with flexible doses of escitalopram (10 to 20 mg/day, n = 30) or sertraline (50 to 200 mg/day, n = 30) for consecutive 8 weeks, respectively. The 24-item Hamilton Depression Rating Scale (HAMD-24), the 14-item Hamilton Anxiety Rating Scale (HAMA-14), the Treatment Emergent Symptom Scale (TESS), the Montreal Cognitive Assessment Scale (MOCA), and the Activity of Daily Living scale (ADL) were used to assess patients before, during, and after treatment for depression, anxiety, adverse effects, cognitive function, and daily living activities. Repeated measures ANOVA, the Mann-Whitney U test, the chi-square test (χ2), or Fisher's exact test was employed to assess baseline demographics, response rate, adverse effects rate, and changes in other clinical variables. RESULTS: Significant reduction in HAMD-24 and HAMA-14 scores was evaluated at baseline, as well as 1, 3, 4, 6, and 8 weeks of drug intervention (p < 0.01). There was a significant group difference in post-treatment HAMD-24 scores (p < 0.05), but no difference was observed in HAMA-14 scores (p > 0.05). Further analysis showed a significant variance in the HAMD-24 scores between the two groups at the end of the first week (p < 0.01). The incidence of adverse effects in both patient groups was mild, but there was a statistically significant difference between the two groups (p < 0.05). The improvement in cognitive function and the recovery of daily living abilities were comparable between both groups (p > 0.05). CONCLUSION: Escitalopram and sertraline showed comparable efficacy for anxiety symptoms, cognitive function, and daily living abilities in PSD patients. In addition, escitalopram was more appropriate for alleviating depressive symptoms. To validate the conclusion, trials with a larger sample size are in demand in the future. The registration number is ChiCTR1800017373.


Assuntos
Atividades Cotidianas , Escitalopram , Sertralina , Acidente Vascular Cerebral , Humanos , Sertralina/uso terapêutico , Sertralina/efeitos adversos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Adulto , Idoso de 80 Anos ou mais , Escitalopram/uso terapêutico , Escitalopram/efeitos adversos , Depressão/tratamento farmacológico , Depressão/etiologia , Resultado do Tratamento , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Escalas de Graduação Psiquiátrica , Antidepressivos/uso terapêutico , Antidepressivos/efeitos adversos , Citalopram/uso terapêutico , Citalopram/efeitos adversos
14.
J Nanobiotechnology ; 22(1): 565, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39272089

RESUMO

Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.


Assuntos
Arachis , Germinação , Grafite , Tolerância ao Sal , Plântula , Sementes , Arachis/metabolismo , Arachis/efeitos dos fármacos , Arachis/fisiologia , Arachis/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Transcriptoma/efeitos dos fármacos , Antioxidantes/metabolismo
15.
BMC Pediatr ; 24(1): 643, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390439

RESUMO

BACKGROUND: The ability of socially assistive robots (SARs) to treat dementia and Alzheimer's disease has been verified. Currently, to increase the range of their application, there is an increasing amount of interest in using SARs to relieve pain and negative emotions among children in routine medical settings. However, there is little consensus regarding the use of these robots. OBJECTIVE: This study aimed to evaluate the effect of SARs on pain and negative affectivity among children undergoing invasive needle-based procedures. DESIGN: This study was a systematic review and meta-analysis of randomized controlled trials that was conducted in accordance with the Cochrane Handbook guidelines. METHODS: The PubMed, CINAHL, Web of Science, Cochrane Library, Embase, CNKI, and WanFang databases were searched from inception to January 2024 to identify relevant randomized controlled trials (RCTs). We used the Cochrane Risk of Bias tool 2.0 (RoB2.0) to assess the risk of bias among the included studies, and we used RevMan 5.4 software to conduct the meta-analysis. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was used to assess the quality of the evidence. RESULTS: Ten RCTs involving 815 pediatric subjects were selected for this review and reported outcomes related to pain and emotions during IV placement, port needle insertion, flu vaccination, blood sampling, and dental treatment. Children undergoing needle-related procedures with SARs reported less anxiety (SMD= -0.36; 95% CI= -0.64, -0.09) and fewer distressed avoidance behaviors (SMD= -0.67; 95% CI= -1.04, -0.30) than did those receiving typical care. There were nonsignificant differences between these groups in terms of in pain (SMD = -0.02; 95% CI = - 0.81, 0.78) and fear (SMD = 0.38; 95% CI= -0.06, 0.82). The results of exploratory subgroup analyses revealed no statistically significant differences based on the intervention type of robots or anesthetic use. CONCLUSIONS: The use of SARs is a promising intervention method for alleviating anxiety and distress among children undergoing needle-related procedures. However, additional high-quality randomized controlled trials are needed to further validate these conclusions. TRIAL REGISTRATION: The protocol of this study has been registered in the database PROSPERO (registration ID: CRD42023413279).


Assuntos
Agulhas , Robótica , Humanos , Criança , Ensaios Clínicos Controlados Aleatórios como Assunto , Dor Processual/etiologia , Dor Processual/prevenção & controle , Manejo da Dor/métodos
16.
Environ Toxicol ; 39(1): 299-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705323

RESUMO

Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.


Assuntos
Apoptose , Neoplasias Bucais , Humanos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Bucais/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396816

RESUMO

Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.


Assuntos
Adesões Focais , Trombospondinas , Doenças Vasculares , Humanos , Autofagia , Proteína Beclina-1/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Fosforilação , Doenças Vasculares/metabolismo , Trombospondinas/metabolismo
18.
Angew Chem Int Ed Engl ; 63(37): e202408504, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38884612

RESUMO

The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.

19.
Angew Chem Int Ed Engl ; : e202417251, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39460653

RESUMO

Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45 [[EQUATION]] with approximately 20.3% overall electron yield. Under continuous operation, we achieved 19.90 [[EQUATION]] catalytic activity, over 74.3% methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in-situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.

20.
Angew Chem Int Ed Engl ; 63(12): e202316925, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38284505

RESUMO

During multivalent ions insertion processes, intense electrostatic interaction between charge carriers and host makes the high-performance reversible Al3+ storage remains an elusive target. On account of the strong electrostatic repulsion and poor robustness, Prussian Blue analogues (PBAs) suffer severely from the inevitable and large strain and phase change during reversible Al3+ insertion. Herein, we demonstrate an entropy-driven strategy to realize ultralong life aqueous Al-ion batteries (AIBs) based on medium entropy PBAs (ME-PBAs) host. By multiple redox active centers introduction, the intrinsic poor conductivity can be enhanced simultaneously, resulting in outstanding capabilities of electrochemical Al3+ storage. Meanwhile, the co-occupation at metal sites in PBA frameworks can also increase the M-N bond intensity, which is beneficial for constraining the phase change during consecutive Al3+ reversible insertion, to realize an extended lifespan over 10,000 cycles. Based on the calculation at different operation states, the fluctuation of ME-PBA lattice parameters is only 1.2 %. Assembled with MoO3 anodes, the full cells can also deliver outstanding electrochemical properties. The findings highlight that, the entropy regulation strategy could uncover the isochronous constraint on both strain and phase transition for long-term reversible Al3+ storage, providing a promising design for advanced electrode materials for aqueous multivalent ions batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA