Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848676

RESUMO

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Assuntos
Modelos Biológicos , Neoplasias , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Análise de Célula Única , Transcriptoma/genética , Células-Tronco Neoplásicas/patologia
2.
Cell ; 180(2): 248-262.e21, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978344

RESUMO

The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.


Assuntos
Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Espermatogênese/genética , Adulto , Animais , Sequência de Bases/genética , Perfilação da Expressão Gênica/métodos , Células Germinativas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Taxa de Mutação , Testículo/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética
3.
Cell ; 166(6): 1500-1511.e9, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610572

RESUMO

Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8(+) tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8(+) TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact.


Assuntos
Linfócitos T CD8-Positivos/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/imunologia , Feminino , Fator de Transcrição GATA3/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/imunologia , Melanoma/fisiopatologia , Metalotioneína/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
4.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
5.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987605

RESUMO

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.

6.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418917

RESUMO

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Assuntos
Processamento Alternativo , Evolução Molecular , Hominidae , Proteínas com Domínio T , Cauda , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Elementos Alu/genética , Modelos Animais de Doenças , Genoma/genética , Hominidae/anatomia & histologia , Hominidae/genética , Íntrons/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/anatomia & histologia , Cauda/embriologia , Éxons/genética
8.
Nature ; 596(7871): 211-220, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381231

RESUMO

Deciphering the principles and mechanisms by which gene activity orchestrates complex cellular arrangements in multicellular organisms has far-reaching implications for research in the life sciences. Recent technological advances in next-generation sequencing- and imaging-based approaches have established the power of spatial transcriptomics to measure expression levels of all or most genes systematically throughout tissue space, and have been adopted to generate biological insights in neuroscience, development and plant biology as well as to investigate a range of disease contexts, including cancer. Similar to datasets made possible by genomic sequencing and population health surveys, the large-scale atlases generated by this technology lend themselves to exploratory data analysis for hypothesis generation. Here we review spatial transcriptomic technologies and describe the repertoire of operations available for paths of analysis of the resulting data. Spatial transcriptomics can also be deployed for hypothesis testing using experimental designs that compare time points or conditions-including genetic or environmental perturbations. Finally, spatial transcriptomic data are naturally amenable to integration with other data modalities, providing an expandable framework for insight into tissue organization.


Assuntos
Perfilação da Expressão Gênica/métodos , Especificidade de Órgãos/genética , Transcriptoma , Animais , Análise de Dados , Doença/genética , Humanos , Transcrição Gênica/genética
10.
Genome Res ; 31(10): 1719-1727, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599005

RESUMO

Phenotypic heterogeneity within malignant cells of a tumor is emerging as a key property of tumorigenesis. Recent work using single-cell transcriptomics has led to the identification of distinct cancer cell states across a range of cancer types, but their functional relevance and the advantage that they provide to the tumor as a system remain elusive. We present here a definition of cancer cell states in terms of coherently and differentially expressed gene modules and review the origins, dynamics, and impact of states on the tumor system as a whole. The spectrum of cell states taken on by a malignant population may depend on cellular lineage, epigenetic history, genetic mutations, or environmental cues, which has implications for the relative stability or plasticity of individual states. Finally, evidence has emerged that malignant cells in different states may cooperate or compete within a tumor niche, thereby providing an evolutionary advantage to the tumor through increased immune evasion, drug resistance, or invasiveness. Uncovering the mechanisms that govern the origin and dynamics of cancer cell states in tumorigenesis may shed light on how heterogeneity contributes to tumor fitness and highlight vulnerabilities that can be exploited for therapy.


Assuntos
Neoplasias , Evolução Biológica , Carcinogênese , Transformação Celular Neoplásica , Humanos , Mutação , Neoplasias/patologia
11.
Mol Syst Biol ; 19(3): e11021, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36744393

RESUMO

Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin ß-hemolysin/cytolysin (ß-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of ß-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through ß-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a ß-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that ß-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.


Assuntos
Placenta , Infecções Estreptocócicas , Camundongos , Animais , Feminino , Gravidez , Humanos , Placenta/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Inflamação , Macrófagos , Infecções Estreptocócicas/metabolismo
12.
Nat Rev Genet ; 23(4): 196-197, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132201
13.
Hum Genet ; 141(6): 1211-1222, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34482438

RESUMO

Of all mammalian organs, the testis has long been observed to have the most diverse gene expression profile. To account for this widespread gene expression, we have proposed a mechanism termed 'transcriptional scanning', which reduces germline mutation rates through transcription-coupled repair (TCR). Our hypothesis contrasts with an earlier observation that mutation rates are overall positively correlated with gene expression levels in yeast, implying that transcription is mutagenic due to effects dominated by transcription-coupled damage (TCD). Here we report evidence that the compound effects of both TCR and TCD during spermatogenesis modulate human germline mutation rates, with TCR dominating in most genes, thus supporting the transcriptional scanning hypothesis. Our analyses address potentially confounding factors, distinguish the differential mutagenic effects acting on the highly expressed genes and the low-to-moderately expressed genes, and resolve concerns relating to the validation of the results using a de novo mutation dataset. We also discuss the theoretical possibility of transcriptional scanning hypothesis from an evolutionary perspective. Together, these analyses support a model by which the coupling of transcription-coupled repair and damage establishes the pattern of germline mutation rates and provide an evolutionary explanation for widespread gene expression during spermatogenesis.


Assuntos
Taxa de Mutação , Transcrição Gênica , Animais , Reparo do DNA/genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Mamíferos/genética , Mutação , Receptores de Antígenos de Linfócitos T/genética , Saccharomyces cerevisiae/genética
14.
Development ; 146(12)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249003

RESUMO

Single cell biology is currently revolutionizing developmental and evolutionary biology, revealing new cell types and states in an impressive range of biological systems. With the accumulation of data, however, the field is grappling with a central unanswered question: what exactly is a cell type? This question is further complicated by the inherently dynamic nature of developmental processes. In this Hypothesis article, we propose that a 'periodic table of cell types' can be used as a framework for distinguishing cell types from cell states, in which the periods and groups correspond to developmental trajectories and stages along differentiation, respectively. The different states of the same cell type are further analogous to 'isotopes'. We also highlight how the concept of a periodic table of cell types could be useful for predicting new cell types and states, and for recognizing relationships between cell types throughout development and evolution.


Assuntos
Evolução Biológica , Diferenciação Celular , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans , Biologia do Desenvolvimento/tendências , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos , Ratos , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Nature ; 531(7596): 637-641, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26886793

RESUMO

Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Filogenia , Animais , Padronização Corporal/genética , Sequência Conservada/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes Controladores do Desenvolvimento/genética , Modelos Biológicos , Fenótipo , Especificidade da Espécie , Transcriptoma/genética
17.
Nucleic Acids Res ; 48(11): 5926-5938, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421815

RESUMO

Alternative polyadenylation (APA) produces isoforms with distinct 3'-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3'-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3' UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3' UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.


Assuntos
Regiões 3' não Traduzidas/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Poli A/análise , Poliadenilação , Animais , Drosophila melanogaster , Desenvolvimento Embrionário/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Xenopus laevis
18.
Nucleic Acids Res ; 48(1): 486-499, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31745563

RESUMO

Cross-species pathway transplantation enables insight into a biological process not possible through traditional approaches. We replaced the enzymes catalyzing the entire Saccharomyces cerevisiae adenine de novo biosynthesis pathway with the human pathway. While the 'humanized' yeast grew in the absence of adenine, it did so poorly. Dissection of the phenotype revealed that PPAT, the human ortholog of ADE4, showed only partial function whereas all other genes complemented fully. Suppressor analysis revealed other pathways that play a role in adenine de-novo pathway regulation. Phylogenetic analysis pointed to adaptations of enzyme regulation to endogenous metabolite level 'setpoints' in diverse organisms. Using DNA shuffling, we isolated specific amino acids combinations that stabilize the human protein in yeast. Thus, using adenine de novo biosynthesis as a proof of concept, we suggest that the engineering methods used in this study as well as the debugging strategies can be utilized to transplant metabolic pathway from any origin into yeast.


Assuntos
Adenina/biossíntese , Vias Biossintéticas/genética , Carboxiliases/genética , Cromossomos Artificiais Humanos/química , Peptídeo Sintases/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Carboxiliases/metabolismo , Cromossomos Artificiais Humanos/metabolismo , Teste de Complementação Genética , Engenharia Genética/métodos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Peptídeo Sintases/metabolismo , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Trends Genet ; 34(1): 11-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061469

RESUMO

Evolution and development are two inherently intertwined processes. As the embryo develops it does so in ways that both reflect past constraints and bias the future evolution of the species. While research exploiting this insight typically studies individual genes, transcriptomic analyses have sparked a new wave of discoveries. In this opinion piece, I review the evidence arising from transcriptomics on the topics of the evolution of germ layers, the phylotypic stage, and developmental constraints. The spatiotemporal pattern of gene expression across germ layers provides evidence that the endoderm was the first germ layer to evolve. Comparing transcriptome dynamics throughout developmental time across distant species reveals a mid-developmental transition under strong developmental constraints. These studies highlight the efficiency of exploratory data analysis using computational tools and comparative approaches for discovery.


Assuntos
Evolução Biológica , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Camadas Germinativas , Filogenia
20.
Nature ; 519(7542): 219-22, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25487147

RESUMO

The concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years (refs 1 - 3). Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Endoderma/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Análise Espaço-Temporal , Transcriptoma/genética , Animais , Caenorhabditis elegans/citologia , Linhagem da Célula , Ingestão de Alimentos , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Endoderma/citologia , Endoderma/embriologia , Perfilação da Expressão Gênica , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Poríferos/citologia , Poríferos/embriologia , Poríferos/genética , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Fatores de Tempo , Xenopus/embriologia , Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA