Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036730

RESUMO

Evident in its name, the gastric pathogen Helicobacter pylori has a helical cell morphology which facilitates efficient colonization of the human stomach. An improved light-focusing strategy allowed us to robustly distinguish even subtle perturbations of H. pylori cell morphology by deviations in light-scattering properties measured by flow cytometry. Profiling of an arrayed genome-wide deletion library identified 28 genes that influence different aspects of cell shape, including properties of the helix, cell length or width, cell filament formation, cell shape heterogeneity, and cell branching. Included in this mutant collection were two that failed to form any helical cells, a soluble lytic transglycosylase and a previously uncharacterized putative multipass inner membrane protein HPG27_0728, renamed Csd7. A combination of cell fractionation, mutational, and immunoprecipitation experiments show that Csd7 and Csd2 collaborate to stabilize the Csd1 peptidoglycan (PG) endopeptidase. Thus, both csd2 and csd7 mutants show the same enhancement of PG tetra-pentapeptide cross-linking as csd1 mutants. Csd7 also links Csd1 with the bactofilin CcmA via protein-protein interactions. Although Csd1 is stable in ccmA mutants, these mutants show altered PG tetra-pentapeptide cross-linking, suggesting that Csd7 may directly or indirectly activate as well as stabilize Csd1. These data begin to illuminate a highly orchestrated program to regulate PG modifications that promote helical shape, which includes nine nonessential nonredundant genes required for helical shape and 26 additional genes that further modify H. pylori's cell morphology.IMPORTANCE The stomach ulcer and cancer-causing pathogen Helicobacter pylori has a helical cell shape which facilitates stomach infection. Using light scattering to measure perturbations of cell morphology, we identified 28 genes that influence different aspects of cell shape. A mutant in a previously uncharacterized protein renamed Csd7 failed to form any helical cells. Biochemical analyses showed that Csd7 collaborates with other proteins to stabilize the cell wall-degrading enzyme Csd1. Csd7 also links Csd1 with a putative filament-forming protein via protein-protein interactions. These data suggest that helical cell shape arises from a highly orchestrated program to regulate cell wall modifications. Targeting of this helical cell shape-promoting program could offer new ways to block infectivity of this important human pathogen.


Assuntos
Membrana Externa Bacteriana/química , Proteínas de Bactérias/química , Endopeptidases/química , Genoma Bacteriano , Helicobacter pylori/citologia , Helicobacter pylori/genética , Proteínas de Bactérias/genética , Parede Celular , Citoesqueleto/química , Endopeptidases/genética , Mutação
2.
Mol Microbiol ; 89(4): 690-701, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23796240

RESUMO

Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell-shape determination. Most LytM-like proteins that have been structurally and/or biochemically characterized are metallo-endopeptidases that cleave cross-links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active-site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo-endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Endopeptidases/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 108(45): E1052-60, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22006326

RESUMO

ATP-binding cassette transporters are ubiquitous membrane protein complexes that move substrates across membranes. They do so using ATP-induced conformational changes in their nucleotide-binding domains to alter the conformation of the transport cavity formed by their transmembrane domains. In Escherichia coli, an ATP-binding cassette transporter-like complex composed of FtsE (nucleotide-binding domain) and FtsX (transmembrane domain) has long been known to be important for cytokinesis, but its role in the process has remained mysterious. Here we identify FtsEX as a regulator of cell-wall hydrolysis at the division site. Cell-wall material synthesized by the division machinery is shared initially by daughter cells and must be split by hydrolytic enzymes called "amidases" to drive daughter-cell separation. We recently showed that the amidases require activation at the cytokinetic ring by proteins with LytM domains, of which EnvC is the most critical. In this report, we demonstrate that FtsEX directly recruits EnvC to the septum via an interaction between EnvC and a periplasmic loop of FtsX. Importantly, we also show that FtsEX variants predicted to be ATPase defective still recruit EnvC to the septum but fail to promote cell separation. Our results thus suggest that amidase activation via EnvC in the periplasm is regulated by conformational changes in the FtsEX complex mediated by ATP hydrolysis in the cytoplasm. Since FtsE has been reported to interact with the tubulin-like FtsZ protein, our model provides a potential mechanism for coupling amidase activity with the contraction of the FtsZ cytoskeletal ring.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Amidoidrolases/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/genética , Hidrólise
4.
Mol Microbiol ; 85(4): 768-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22715947

RESUMO

Remodelling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyse PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB orthologue was also solved, revealing that the active site of AmiB is occluded by a conserved alpha helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase autoinhibition governed by conserved subcomplexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multienzyme PG-remodelling machines.


Assuntos
Divisão Celular , Parede Celular/enzimologia , Escherichia coli/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Alinhamento de Sequência
5.
Microbiol Mol Biol Rev ; 80(1): 187-203, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26864431

RESUMO

Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.


Assuntos
Bacillus subtilis/ultraestrutura , Parede Celular/ultraestrutura , Escherichia coli/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Animais , Bacillus subtilis/fisiologia , Parede Celular/fisiologia , Meio Ambiente , Escherichia coli/fisiologia , Fímbrias Bacterianas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Consórcios Microbianos/fisiologia , Viabilidade Microbiana , Movimento/fisiologia
6.
Protein Eng Des Sel ; 17(9): 659-64, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15516361

RESUMO

After rearrangement of immunoglobulin gene segments, the immune system evolves the antibody repertoire by mutating the immunoglobulin variable region at a high rate. While this somatic hypermutation was thought to occur only at the variable region, recent studies suggest that hypermutation can occur at locations throughout the genome. Building upon this notion, we sought to exploit this mechanism as a mutagenesis tool. We created a substrate based on GFP that could be screened using flow cytometry and showed that retroviral infection can deliver the transgene to genomic locations that support hypermutation. Infected cells generated various GFP mutants with increased fluorescence intensity and analysis revealed mutations not only at the chromophore, but also an unexpected mutation at a distant residue. Our results demonstrate in principle that immunoglobulin somatic hypermutation can be a potent means of mutagenesis. With appropriate selection conditions it may be utilized to evolve gene products with desired properties.


Assuntos
Linfócitos B , Evolução Molecular Direcionada/métodos , Hipermutação Somática de Imunoglobulina/genética , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Sequência de Bases , Linhagem Celular Tumoral , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Camundongos , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/genética , Mutagênese , Fenótipo
7.
Genome Biol ; 7(6): R47, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16764729

RESUMO

BACKGROUND: When gene expression varies unpredictably between genetically identical organisms, this is sometimes ascribed as stochastic. With the prevalence of retroviral vectors, stochastic repression is often observed and can complicate the interpretation of outcomes. But it may also faithfully reflect characteristics of sites in the genome. RESULTS: We created and identified several cell clones in which, within a given cell, retroviral transcription of a transgene was repressed heritably and essentially irreversibly. This repression was relatively slow; total repression in all cells took months. We observed the dynamics of repression and found that they were ergodic, that is, tending with a probability to a final state independent of previous conditions. Different positions of the transgene in the genome demonstrated different dynamics. At a position on mouse chromosome 9, repression abided by near perfect first-order kinetics and was highly reproducible, even under conditions where the number of cell generations per day varied. CONCLUSION: We propose that such a cell division independent 'off' mechanism could play a role in endogenous gene expression, potentially providing an epigenetically based timer for extended periods.


Assuntos
Regulação da Expressão Gênica , Transgenes , Animais , Linhagem Celular , Regulação para Baixo , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Cinética , Metilação , Camundongos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA