Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38684153

RESUMO

In materials science, the impact of density on a material's capabilities is profound. Conventional sintering requires high temperatures and is energy-demanding, propelling the pursuit of less intensive, low-temperature densification methods. Electric field-assisted sintering has recently gained attention for its simplicity and effectiveness, offering a new frontier in low-temperature densification. In this study, dense bulk materials were produced by subjecting monophasic Ag2Se powders to electric field-assisted sintering, where a direct current with an average value of 4 A was applied, achieving a peak temperature of 344 K. The novel low-temperature densification mechanism unfolds thus: nanoscale silver protrusions, stimulated by electrical current, engage in a dissociative adsorption reaction with the ambient saturated selenium vapor. This process swiftly engenders the formation of fresh silver selenide (Ag2Se) compounds, initiating nucleation and subsequent growth. Consecutively, these compounds seamlessly occupy and expand, perpetually bridging the interstices amidst the powders. In a scant 8 s, the density swiftly surpassed 99%, yielding a bulk material that exhibited aZTvalue of 1.07 at 390 K. This investigation not only attains an unparalleled density at low temperatures but also charts a pioneering course for material densification in such conditions.

2.
ACS Appl Mater Interfaces ; 16(17): 22189-22196, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651521

RESUMO

Understanding mass transfer mechanisms is vital for developing new material synthesis and densification technologies. Ion transport, serving both mass and charge transfer, is essential for the rapid preparation of high-performance fast ionic conductor thermoelectric materials like Zn4Sb3 and Cu2Q (Q = S, Se). In the case of dual-cation fast ion conductor materials like CuAgSe, exploring the relationship between cation transport becomes pertinent. In this study, copper (Cu) and selenium (Se) undergo a reaction in the presence of an electric field (∼15 A), resulting in the formation of the CuSe compound. Subsequent to this initial reaction, a subsequent thermal environment facilitates the interaction among Cu, CuSe, and Ag2Se, culminating in the rapid formation and densification of CuAgSe (with a relative density exceeding 99%) in just 30 s. Evidently, the diffusion of copper ions substantiates a pivotal role in facilitating mass transfer. As a result, CuAg1+xSe samples with different silver contents (x = 0.01, 0.02, 0.03, 0.04 and 0.05) can effectively inhibit cation vacancy, and introduce highly ordered Ag nanotwins to enhance the electrical transport performance. For CuAg1.04Se, a peak ZT value of 1.0 can be achieved at 673 K, which is comparable to the literatures. This work will guide the future electric field-assisted rapid mass transfer of materials.

3.
ACS Appl Mater Interfaces ; 16(13): 16505-16514, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527233

RESUMO

The micro thermoelectric device (m-TED) boasts features such as adjustable volume, straightforward structure, and precise, rapid temperature control, positioning it as the only current solution for managing the temperature of microelectronic systems. It is extensively utilized in 5G optical modules, laser lidars, and infrared detection. Nevertheless, as the size of the m-TED diminishes, the growing proportion of interface damages the device's operational reliability, constraining the advancement of the m-TED. In this study, we used commercially available bismuth telluride materials to construct the m-TED. The device's reliability was tested under various temperatures: -40, 85, 125, and 150 °C. By deconstructing and analyzing the devices that failed during the tests, we discovered that the primary cause of device failure was the degradation of the solder layer. Moreover, we demonstrated that encapsulating the device with polydimethylsiloxane (PDMS) could effectively delay the deterioration of its performance. This study sparks new insights into the service reliability of m-TEDs and paves the way for further optimizing device interface design and enhancing the device manufacturing process.

4.
ACS Appl Mater Interfaces ; 14(4): 5439-5446, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073688

RESUMO

In this work, (Ag, In)-co-doped Cu2SnSe3-based compounds are prepared using a self-propagating high-temperature synthesis process. Ag2Se and as-synthesized (Ag, In)-co-doped Cu2SnSe3-based powders are mixed in a proportion according to the formula of Cu1.85Ag0.15Sn0.91In0.09Se3/x Ag2Se (x = 0, 3, 4, and 5%), which is followed by a subsequent plasma-activated sintering (PAS) to obtain consolidated composite bulks. A sandwich experiment is designed to reveal the evolution of the microstructure and phase composition of the composite samples during the PAS process. We investigate the reaction mechanism between Ag2Se and Cu2SnSe3-based matrix as well as the influence of Ag2Se on the phase composition, microstructure, and thermoelectric transport properties of the composites. Ag2Se addition is proven to be effective to improve Ag solubility in the Cu1.85Ag0.15Sn0.91In0.09Se3 matrix and introduce a CuSe secondary phase and an Ag-rich phase at grain boundaries. The electrical conductivity of Cu1.85Ag0.15Sn0.91In0.09Se3/x Ag2Se (x = 0, 3, 4, and 5%) composites decreases while the Seebeck coefficient increases with increasing Ag2Se addition, resulting in an optimized power factor. Moreover, benefiting from the collective phonon scattering at various defects induced by Ag2Se addition, the composite samples exhibit significantly suppressed lattice thermal conductivity, which reaches as low as 0.11 W m-1 K-1 at 700 K for the x = 5% sample. A peak figure-of-merit (ZT) of 1.26 at 750 K and an average ZT of 0.75 at 300-800 K are obtained for Cu1.85Ag0.15Sn0.91In0.09Se3/5% Ag2Se. This work provides an efficient way to improve average ZT values of Cu2SnSe3-based compounds for promising power generation at intermediate temperatures.

5.
Rev Sci Instrum ; 93(4): 045105, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489943

RESUMO

Wearable thermoelectric generators can harvest heat from the human body to power an intelligent electronic device, which plays an important role in wearable electronics. However, due to the complexity of human skin, there is still no unified standard for performance testing of wearable thermoelectric generators under wearable conditions. Herein, a test platform suitable for a wearable thermoelectric generator was designed and built by simulating the structure of the arm. Based on the biological body temperature regulation function, water flow and water temperature substitute blood flow and blood temperature, the silicone gel with some thickness simulates the skin layer of the human arm, thus achieving the goal of adjusting the thermal resistance of human skin. Meanwhile, the weight is used as the contact pressure to further ensure the reliability and accuracy of the test data. In addition, the environment regulatory system is set up to simulate the outdoor day. Actually, the maximum deviation of the performance of the thermoelectric generator worn on the test platform and human arm is ∼5.2%, indicating the accuracy of objective evaluation.


Assuntos
Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Temperatura , Água
6.
ACS Appl Mater Interfaces ; 13(3): 4185-4191, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433997

RESUMO

AgBi3S5 is an environmentally friendly n-type thermoelectric material composed of earth-abundant and nontoxic elements. It has a complex monoclinic structure with distorted NaCl-type fragments, which provide its intrinsically low thermal conductivity. However, poor electrical properties limit its overall performance. Configurational entropy engineering is an effective method to enhance thermoelectric properties. With the increase of configurational entropy, phonon point defect scattering is amplified, yielding lower lattice thermal conductivity, while the structure symmetry can also be improved, which leads to the enhanced electrical transport property. In this study, we combine carrier modulation and entropy engineering, utilizing melting-annealing and spark plasma sintering, to synthesize a series of AgBi3(SeyS1-y)5.08 bulks. Se substitution effectively increases the configurational entropy and thus dramatically decreases the thermal conductivity. Moreover, anion deficiency modulation effectively optimizes the carrier concentration and the electrical transport properties. Due to a power factor of 2.7 µW/(cm·K2) and a low thermal conductivity of 0.45 W/(m·K) at 723 K, the AgBi3(Se0.9S0.1)5.08 sample possesses the highest ZT of 0.42 at 723 K, nearly double the value of AgBi3S5.08 or pristine AgBi3S5. Our work demonstrates that apart from carrier optimization, entropy engineering opens a new avenue for enhancing the thermoelectric properties of a given material.

7.
ACS Appl Mater Interfaces ; 13(46): 55178-55187, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34783236

RESUMO

As an ecofriendly and low-cost thermoelectric material, Cu2SnSe3 has recently drawn much attention. In this work, the thermoelectric properties of Cu2SnSe3-based materials have been synergistically optimized. Ag doping at the Cu site enables strong phonon scattering via large strain field fluctuations and increases the effective mass of carriers through band engineering, which results in a reduced lattice thermal conductivity and enhanced Seebeck coefficient. Thus, a peak ZT value of 1.04 at 800 K is obtained for Cu1.85Ag0.15SnSe3. Then, In is further doped at the Sn site to further increase the carrier concentration and power factor; the ZT values of Cu1.85Ag0.15Sn1-yInySe3 samples are highly improved in the temperature range of 300-800 K, and a peak ZT value of 1.12 is obtained at 800 K for the Cu1.85Ag0.15Sn0.91In0.09Se3 sample. Considering that Ag2S decomposes to Ag and S completely under vacuum and high current field, the sulfur vapor would be pumped away by a vacuum pump, and the generated Ag not only enriches at the grain boundary of the Cu1.85Ag0.15Sn0.91In0.09Se3 bulk material but also enters the matrix and occupies the Cu site, leading to the extruding Cu and Se forming the second phase of CuSe nanoparticles. Thus, the power factor greatly improves to 13.8 µW cm-1 K-2 at 700 K, and the lattice thermal conductivity is as low as 0.12 W m-1 K-1 at 800 K for the Cu1.85Ag0.15Sn0.91In0.09Se3/4% Ag2S composite. Finally, a high ZT value of 1.58 is obtained at 800 K for the Cu1.85Ag0.15Sn0.91In0.09Se3/4% Ag2S composite, which is nearly an increase of 204% compared to that of Cu2SnSe3. This work provides an effective solution to optimize the conflicting material properties for Cu2SnSe3-based thermoelectric materials.

8.
ACS Appl Mater Interfaces ; 13(49): 58974-58981, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854669

RESUMO

Bi2Te3-based materials are dominating thermoelectrics for almost all of the room-temperature applications. To meet the future demands, both their thermoelectric (TE) and mechanical properties need to be further improved, which are the requisite for efficient TE modules applied in areas such as reliable micro-cooling. The conventional zone melting (ZM) and powder metallurgy (PM) methods fall short in preparing Bi2Te3-based alloys, which have both a highly textured structure for high TE properties and a fine-grained microstructure for high mechanical properties. Herein, a mechanical exfoliation combined with spark plasma sintering (ME-SPS) method is developed to prepare Bi0.5Sb1.5Te3 with highly improved mechanical properties (correlated mainly to the dislocation networks), as well as significantly improved thermoelectric properties (correlated mainly to the texture structure). In the method, both the dislocation density and the orientation factor (F) can be tuned by the sintering pressure. At a sintering pressure of 20 MPa, an exceptional F of up to 0.8 is retained, leading to an excellent power factor of 4.8 mW m-1 K-2 that is much higher than that of the PM polycrystalline. Meanwhile, the method can readily induce high-density dislocations (up to ∼1010 cm-2), improving the mechanical properties and reducing the lattice thermal conductivity as compared to the ZM ingot. In the exfoliated and then sintered (20 MPa) sample, the figure-of-merit ZT = 1.2 (at 350 K), which has increased by about ∼20%, and the compressive strength has also increased by ∼20%, compared to those of the ZM ingot, respectively. These results demonstrate that the ME-SPS method is highly effective in preparing high-performance Bi2Te3-based alloys, which are critical for TE modules in commercial applications at near-room temperature.

9.
Nat Commun ; 12(1): 7207, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893623

RESUMO

Electric field-induced changes in the electrical resistance of a material are considered essential and enabling processes for future efficient large-scale computations. However, the underlying physical mechanisms of electroresistance are currently remain largely unknown. Herein, an electrically reversible resistance change has been observed in the thermoelectric α-Cu2Se. The spontaneous electric dipoles formed by Cu+ ions displaced from their positions at the centers of Se-tetrahedrons in the ordered α-Cu2Se phase are examined, and α-Cu2Se phase is identified to be a multipolar antiferroelectric semiconductor. When exposed to the applied voltage, a reversible switching of crystalline domains aligned parallel to the polar axis results in an observed reversible resistance change. The study expands on opportunities for semiconductors with localized polar symmetry as the hardware basis for future computational architectures.

10.
ACS Appl Mater Interfaces ; 13(10): 11977-11984, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33685121

RESUMO

Exploring the origin of intrinsic low thermal conductivity in BiCuSeO is of great significance for searching new oxide thermoelectric (TE) materials. In addition, from the perspective of material preparation, it is of great value to further develop the TE performance optimization strategy of BiCuSeO-based materials. In this work, the low-temperature TE transport properties of Pb-doped BiCuSeO-based materials are investigated. It is found that Pb doping can greatly optimize the carrier concentration, soften the lattice, and reduce the lattice thermal conductivity. The addition of Cu2Se significantly enhanced the grain texture and then increased the interface concentration parallel to the pressure direction in the sintering process, which further reduced the lattice thermal conductivity of the material. Finally, the ZT value of Bi0.96Pb0.04CuSeO-6 mol % Cu2Se bulk material is as high as 0.85 at 840 K. This provides important guidance to improve the properties of TE materials via interface engineering.

11.
Nat Commun ; 12(1): 6077, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667162

RESUMO

Mobile ion-enabled phenomena make ß-Zn4Sb3 a promising material in terms of the re-entry phase instability behavior, mixed electronic ionic conduction, and thermoelectric performance. Here, we utilize the fast Zn2+ migration under a sawtooth waveform electric field and a dynamical growth of 3-dimensional ionic conduction network to achieve ultra-fast synthesis of ß-Zn4Sb3. Moreover, the interplay between the mobile ions, electric field, and temperature field gives rise to exquisite core-shell crystalline-amorphous microstructures that self-adaptively stabilize ß-Zn4Sb3. Doping Cd or Ge on the Zn site as steric hindrance further stabilizes ß-Zn4Sb3 by restricting long-range Zn2+ migration and extends the operation temperature range of high thermoelectric performance. These results provide insight into the development of mixed-conduction thermoelectric materials, batteries, and other functional materials.

12.
Adv Mater ; 32(40): e2003730, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32875625

RESUMO

The applications of mixed ionic-electronic conductors are limited due to phase instability under a high direct current and large temperature difference. Here, it is shown that Cu2 Se is stabilized through regulating the behaviors of Cu+ ions and electrons in a Schottky heterojunction between the Cu2 Se host matrix and in-situ-formed BiCuSeO nanoparticles. The accumulation of Cu+ ions via an ionic capacitive effect at the Schottky junction under the direct current modifies the space-charge distribution in the electric double layer, which blocks the long-range migration of Cu+ and produces a drastic reduction of Cu+ ion migration by nearly two orders of magnitude. Moreover, this heterojunction impedes electrons transferring from BiCuSeO to Cu2 Se, obstructing the reduction reaction of Cu+ into Cu metal at the interface and hence stabilizes the ß-Cu2 Se phase. Furthermore, incorporation of BiCuSeO in Cu2 Se optimizes the carrier concentration and intensifies phonon scattering, contributing to the peak figure of merit ZT value of ≈2.7 at 973 K and high average ZT value of ≈1.5 between 400 and 973 K for the Cu2 Se/BiCuSeO composites. This discovery provides a new avenue for stabilizing mixed ionic-electronic conduction thermoelectrics, and gives fresh insights into controlling ion migration in these ionic-transport-dominated materials.

13.
Adv Mater ; 32(12): e1906457, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048359

RESUMO

Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV-VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.

14.
ACS Appl Mater Interfaces ; 10(1): 864-872, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236464

RESUMO

The ZrNiSn alloy, a member of the half-Heusler family of thermoelectric materials, shows great potential for mid-to-high-temperature power generation applications due to its excellent thermoelectric properties, robust mechanical properties, and good thermal stability. The existing synthesis processes of half-Heusler alloys are, however, rather time and energy intensive. In this study, single-phase ZrNiSn bulk materials were prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) for the first time. The analysis of thermodynamic and kinetic processes shows that the SHS reaction in the ternary ZrNiSn alloy is different from the more usual binary systems. It consists of a series of SHS reactions and mass transfers triggered by the SHS fusion of the binary Ni-Sn system that eventually culminates in the formation of single-phase ternary ZrNiSn in a very short time, which reduced the synthesis period from few days to less than an hour. Moreover, the nonequilibrium feature induces Ni interstitials in the structure, which simultaneously enhances the electrical conductivity and decreases the thermal conductivity, which is favorable for thermoelectric properties. The maximum thermoelectric figure of merit ZT of the SHS + SPS-processed ZrNiSn1-xSbx alloy reached 0.7 at 870 K. This study opens a new avenue for the fast and low-cost fabrication of half-Heusler thermoelectric materials.

15.
ACS Appl Mater Interfaces ; 10(18): 15793-15802, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29671310

RESUMO

SnSe2 is a wide band gap semiconductor ( Eg = 1.05 eV) with a typical two-dimensional hexagonal crystal structure of the prototype CdI2 phase, resulting in an intrinsically low thermal conductivity, which is favorable for thermoelectrics. Herein, we reported the remarkable role of Cl doping in SnSe2/SnSe nanocomposites. Doping with Cl in the system not only increases the carrier concentration by an order of magnitude, but it also modifies the heterojunction from that of the Schottky junction type (p-n junction) in undoped samples to junctions having an ohmic contact (n-n junction) when the samples are doped with Cl, increasing their carrier mobility in the process. On account of the simultaneously boosted carrier concentration and carrier mobility upon Cl doping, the electrical conductivity and the power factor are greatly increased. Moreover, the enhanced point defect phonon scattering induced by Cl doping, coupled with the interface phonon scattering, results in a suppression of the thermal conductivity. As a consequence, the maximum ZT value of 0.56 at 773 K is achieved in the 6% Cl-doped SnSe2/SnSe nanocomposite measured in the direction parallel to the pressing direction. This is an almost 6 times larger value than that measured on the undoped composite. In addition, unlike the conventional layered compounds (Bi2Te3 and SnSe), the ZT value measured parallel to the pressing direction is much higher than the one measured perpendicular to the pressing direction. This study provides a new way for optimizing the thermoelectric properties of materials through interface regulation.

17.
Nat Commun ; 5: 4908, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25223333

RESUMO

The existing methods of synthesis of thermoelectric (TE) materials remain constrained to multi-step processes that are time and energy intensive. Here we demonstrate that essentially all compound thermoelectrics can be synthesized in a single-phase form at a minimal cost and on the timescale of seconds using a combustion process called self-propagating high-temperature synthesis. We illustrate this method on Cu2Se and summarize key reaction parameters for other materials. We propose a new empirically based criterion for sustainability of the combustion reaction, where the adiabatic temperature that represents the maximum temperature to which the reacting compact is raised as the combustion wave passes through, must be high enough to melt the lower melting point component. Our work opens a new avenue for ultra-fast, low-cost, large-scale production of TE materials, and provides new insights into combustion process, which greatly broaden the scope of materials that can be successfully synthesized by this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA