Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396288

RESUMO

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Assuntos
Artrite , Imunidade Inata , Humanos , Metaloproteinase 3 da Matriz , Interleucina-6/metabolismo , Linfócitos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
2.
Gut ; 71(3): 521-533, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33685966

RESUMO

OBJECTIVE: Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN: We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS: We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-ß induction in response to LGG, as evidenced by the significant decrease in IFN-ß levels in cGAS or STING-deficient DCs. LGG induces IFN-ß production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION: Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.


Assuntos
Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Lacticaseibacillus rhamnosus , Melanoma/terapia , Probióticos/uso terapêutico , Administração Oral , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Interferon Tipo I/metabolismo , Melanoma/etiologia , Melanoma/patologia , Camundongos
3.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743364

RESUMO

B cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin ß-receptor (LTßR) signaling is essential for optimal humoral immune response and protection against an acute herpes simplex virus 1 (HSV-1) infection. Blocking the LTßR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Upregulation of gamma interferon by the LTßR-Ig blockade impairs the sustainability of Tfh-like cells, leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection.IMPORTANCE Immunocompromised people are susceptible to HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTßR signaling-deficient mice and the LTßR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunidade Humoral/imunologia , Receptor beta de Linfotoxina/fisiologia , Linfotoxina-alfa/metabolismo , Linfócitos T/metabolismo , Animais , Centro Germinativo , Herpes Simples/metabolismo , Herpes Simples/virologia , Camundongos , Camundongos Knockout , Transdução de Sinais
4.
Diabetologia ; 57(2): 352-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24162585

RESUMO

AIMS/HYPOTHESIS: Adult beta cells have a diminished ability to proliferate. Phosphatase and tensin homologue (PTEN) is a lipid phosphatase that antagonises the function of the mitogenic phosphatidylinositol 3-kinase (PI3K) pathway. The objective of this study was to understand the role of PTEN and PI3K signalling in the maintenance of beta cells postnatally. METHODS: We developed a Pten (lox/lox); Rosa26 (lacZ); RIP-CreER (+) model that permitted us to induce Pten deletion by treatment with tamoxifen in mature animals. We evaluated islet mass and function as well as beta cell proliferation in 3- and 12-month-old mice treated with tamoxifen (Pten deleted) vs mice treated with vehicle (Pten control). RESULTS: Deletion of Pten in juvenile (3-month-old) beta cells significantly induced their proliferation and increased islet mass. The expansion of islet mass occurred concomitantly with the enhanced ability of the Pten-deleted mice to maintain euglycaemia in response to streptozotocin treatment. In older mice (>12 months of age), deletion of Pten similarly increased islet mass and beta cell proliferation. This novel finding suggests that PTEN-regulated mechanisms may override the age-onset diminished ability of beta cells to respond to mitogenic stimulation. We also found that proteins regulating G1/S cell-cycle transition, such as cyclin D1, cyclin D2, p27 and p16, were altered when PTEN was lost, suggesting that they may play a role in PTEN/PI3K-regulated beta cell proliferation in adult tissue. CONCLUSIONS/INTERPRETATION: The signals regulated by the PTEN/PI3K pathway are important for postnatal maintenance of beta cells and regulation of their proliferation in adult tissues.


Assuntos
Envelhecimento/patologia , Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Ciclo Celular , Morte Celular , Proliferação de Células , Metilação de DNA , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/genética , Deleção de Genes , Homeostase , Masculino , Camundongos , Camundongos Mutantes , PTEN Fosfo-Hidrolase/deficiência , Transdução de Sinais , Regulação para Cima
5.
ACS Nano ; 18(6): 5152-5166, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286035

RESUMO

Blockade of programmed cell death-1/programmed cell death-ligand 1 (PD-L1) immune checkpoints with monoclonal antibodies has shown great promise for cancer treatment, but these antibodies can cause immune-related adverse events in normal organs. Here we report a dual-cell targeted chemo-immunotherapeutic nanoscale coordination polymer (NCP), OxPt/BP, comprising oxaliplatin (OxPt) and 2-bromopalmitic acid (BP), for effective downregulation of PD-L1 expression in both cancer cells and dendritic cells (DCs) by inhibiting palmitoyl acyltransferase DHHC3. OxPt/BP efficiently promotes DC maturation by increasing intracellular oxidative stress and enhancing OxPt-induced immunostimulatory immunogenic cancer cell death. Systemic administration of OxPt/BP reduces the growth of subcutaneous and orthotopic colorectal carcinoma by facilitating the infiltration and activation of cytotoxic T lymphocytes together with reducing the population of immunosuppressive regulatory T cells. As a result, OxPt/BP significantly extends mouse survival without causing side effects. This work highlights the potential of NCPs in simultaneously reprogramming cancer cells and DCs for potent cancer treatment.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Camundongos , Ligantes , Neoplasias/tratamento farmacológico , Imunoterapia , Imunidade Adaptativa , Apoptose , Células Dendríticas , Linhagem Celular Tumoral
6.
Sci Adv ; 10(29): eado0082, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018400

RESUMO

The low success rate of cancer nanomedicines has raised debate on the role of the enhanced permeability and retention (EPR) effect on tumor deposition of nanotherapeutics. Here, we report a bifunctional nanoscale coordination polymer (NCP), oxaliplatin (OX)/2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), to overcome the EPR limitation through stimulator of interferon genes (STING) activation and enhance chemotherapeutic and STING agonist delivery for tumor eradication. OX/GA encapsulates GA and OX in the NCP to protect GA from enzymatic degradation and improve GA and OX pharmacokinetics. STING activation by OX/GA disrupts tumor vasculatures and increases intratumoral deposition of OX by 4.9-fold over monotherapy OX-NCP. OX/GA demonstrates exceptional antitumor effects with >95% tumor growth inhibition and high cure rates in subcutaneous, orthotopic, spontaneous, and metastatic tumor models. OX/GA induces immunogenic cell death of tumor cells and STING activation of innate immune cells to enhance antigen presentation. NCPs provide an excellent nanoplatform to overcome the EPR limitation for effective cancer therapy.


Assuntos
Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Oxaliplatina/farmacologia , Oxaliplatina/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Nucleotídeos Cíclicos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771260

RESUMO

The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.


Assuntos
Neoplasias , Radioterapia , Microambiente Tumoral , Humanos , Neoplasias/radioterapia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Animais , Radioterapia/métodos , Imunidade Inata/efeitos da radiação , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Imunidade Adaptativa
8.
Clin Cancer Res ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691100

RESUMO

PURPOSE: Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that dendritic cells (cDC) maintain Treg we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN: Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT, but associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS: Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS: We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration, and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy.

9.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427437

RESUMO

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Assuntos
Antígeno B7-H1 , Células Supressoras Mieloides , Animais , Antígeno B7-H1/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Metástase Neoplásica , Linhagem Celular Tumoral , Feminino , Modelos Animais de Doenças , Quimiocina CXCL10/metabolismo
10.
Blood ; 117(3): 960-70, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21041719

RESUMO

Interleukin-1ß (IL-1ß) is critical for inflammation and control of infection. The production of IL-1ß depends on expression of pro-IL-1ß and inflammasome component induced by inflammatory stimuli, followed by assembly of inflammasome to generate caspase-1 for cleavage of pro-IL-1ß. Here we show that tumor suppressor death-associated protein kinase (DAPK) deficiency impaired IL-1ß production in macrophages. Generation of tumor necrosis factor-α in macrophages, in contrast, was not affected by DAPK knockout. Two tiers of defects in IL-1ß generation were found in DAPK-deficient macrophages: decreased pro-IL-1ß induction by some stimuli and reduced caspase-1 activation by all inflammatory stimuli examined. With a normal NLRP3 induction in DAPK-deficient macrophages, the diminished caspase-1 generation is attributed to impaired inflammasome assembly. There is a direct binding of DAPK to NLRP3, suggesting an involvement of DAPK in inflammasome formation. We further illustrated that the formation of NLRP3 inflammasome in situ induced by inflammatory signals was impaired by DAPK deficiency. Taken together, our results identify DAPK as a molecule required for full production of IL-1ß and functional assembly of the NLRP3 inflammasome. In addition, DAPK knockout reduced uric acid crystal-triggered peritonitis, suggesting that DAPK may serve as a target in the treatment of IL-1ß-associated autoinflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD , Proteínas Quinases Dependentes de Cálcio-Calmodulina/deficiência , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Quinases Associadas com Morte Celular , Células HEK293 , Humanos , Immunoblotting , Inflamação/metabolismo , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ligação Proteica , Interferência de RNA , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Turk J Pediatr ; 65(6): 919-930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204306

RESUMO

BACKGROUND: An assessment of functional gastrointestinal disorders (FGIDs) in premature infants in their first year of life and neonatal factors influencing the progression of FGIDs was conducted in this research. METHODS: Subjects selected for the retrospective study involved preterm infants being hospitalized in the neonatal department of Northern Jiangsu People`s Hospital from September 2018 to September 2021. Data on neonatal risk factors such as gestational age, gender, birth weight, mode of delivery, feeding pattern, antibiotic administration and addition of probiotics, duration of hospitalization, maternal history of smoking, and mental health status, were all collected and analyzed. FGIDs were diagnosed according to Rome IV criteria. RESULTS: This study included 988 preterm infants, with 725 (73.4%) having at least one FGID, 449 (45.4%) with infant colic, 411 (41.6%) with infant regurgitation, 237 (24.0%) with infant dyschezia, 190 (19.2%) with functional constipation, and 34 (3.4%) with functional diarrhea throughout the first year of life. In total, 263 infants (26.6%) without FGID symptoms were included in the control group. Further, a higher prevalence of FGIDs was observed in preterm infants with infant colic as well as infant regurgitation in particular as being characterized by a low gestational age ( < 32 w), low birth weight ( < 1.5 kg), Cesarean section, formula feeding, neonatal antibiotics use, hospitalization longer than 7 days, and maternal history of smoking. It was found from association analyses that infants exclusively breastfed in their first month of life were at lower risk for regurgitation than those in the control group. CONCLUSIONS: Unnecessary antibiotic use in the neonatal period, Cesarean delivery, passive smoking, lack of breastfeeding along with inappropriate probiotics usage are major risk factors for FGIDs, and their systematic control may be effective in reducing the susceptibility to and prevalence of FGIDs in preterm infants in the first year of life.


Assuntos
Cólica , Gastroenteropatias , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Recém-Nascido Prematuro , Cesárea , Estudos Retrospectivos , Gastroenteropatias/epidemiologia , Fatores de Risco , Antibacterianos/uso terapêutico
12.
Med ; 4(12): 863-874, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38070481

RESUMO

Emerging evidence suggests that local tumor radiotherapy reshapes the repertoire of circulating myeloid-derived suppressor cells (MDSCs) and leads to their infiltration into the tumor microenvironment, which poses a major obstacle for radiotherapy efficacy. Recent findings have identified RNA m6A modification at the nexus of both anti-tumor immunity and radiation response. Here, we examine the mechanisms by which this RNA modification modulates the immune milieu of the radiation-remodeled tumor microenvironment. We discuss potential therapeutic interventions targeting m6A machinery to improve radiotherapy response.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Supressoras Mieloides/patologia , RNA , Neoplasias/genética , Neoplasias/radioterapia , Metilação , Microambiente Tumoral/genética
13.
Cancer Cell ; 41(7): 1294-1308.e8, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236197

RESUMO

RNA N6-methyladenosine (m6A) modification is implicated in cancer progression. However, the impact of m6A on the antitumor effects of radiotherapy and the related mechanisms are unknown. Here we show that ionizing radiation (IR) induces immunosuppressive myeloid-derived suppressor cell (MDSC) expansion and YTHDF2 expression in both murine models and humans. Following IR, loss of Ythdf2 in myeloid cells augments antitumor immunity and overcomes tumor radioresistance by altering MDSC differentiation and inhibiting MDSC infiltration and suppressive function. The remodeling of the landscape of MDSC populations by local IR is reversed by Ythdf2 deficiency. IR-induced YTHDF2 expression relies on NF-κB signaling; YTHDF2 in turn leads to NF-κB activation by directly binding and degrading transcripts encoding negative regulators of NF-κB signaling, resulting in an IR-YTHDF2-NF-κB circuit. Pharmacological inhibition of YTHDF2 overcomes MDSC-induced immunosuppression and improves combined IR and/or anti-PD-L1 treatment. Thus, YTHDF2 is a promising target to improve radiotherapy (RT) and RT/immunotherapy combinations.


Assuntos
NF-kappa B , Neoplasias , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
14.
J Clin Invest ; 133(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099498

RESUMO

Activation of TGF-ß signaling serves as an extrinsic resistance mechanism that limits the potential for radiotherapy. Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) antagonizes TGF-ß signaling and is implicated in cancer progression. However, the molecular mechanisms of BAMBI regulation in immune cells and its impact on antitumor immunity after radiation have not been established. Here, we show that ionizing radiation (IR) specifically reduces BAMBI expression in immunosuppressive myeloid-derived suppressor cells (MDSCs) in both murine models and humans. Mechanistically, YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) directly binds and degrades Bambi transcripts in an N6-methyladenosine-dependent (m6A-dependent) manner, and this relies on NF-κB signaling. BAMBI suppresses the tumor-infiltrating capacity and suppression function of MDSCs via inhibiting TGF-ß signaling. Adeno-associated viral delivery of Bambi (AAV-Bambi) to the tumor microenvironment boosts the antitumor effects of radiotherapy and radioimmunotherapy combinations. Intriguingly, combination of AAV-Bambi and IR not only improves local tumor control, but also suppresses distant metastasis, further supporting its clinical translation potential. Our findings uncover a surprising role of BAMBI in myeloid cells, unveiling a potential therapeutic strategy for overcoming extrinsic radioresistance.


Assuntos
Neoplasias , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Proteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
15.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479617

RESUMO

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Assuntos
Coxiella burnetii , Febre Q , Animais , Humanos , Camundongos , Coxiella burnetii/genética , Macrófagos , Febre Q/genética , Febre Q/microbiologia
16.
Front Pediatr ; 10: 1032044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545664

RESUMO

Background: The purpose of this study was to assess the safety and efficacy of a new double-lumen tracheal tube for neonates, with a conventional tracheal tube as a control. Method: Newborns with respiratory distress syndrome (RDS) requiring endotracheal intubation admitted to the tertiary neonatal intensive care unit (NICU) of Qujing Maternal and Child Healthcare Hospital in Yunnan Province between March 2021 and May 2022 were enrolled in this prospective cohort study. Outcome indicators related to effectiveness included mainly the number of intubations, duration of ventilation, duration of oxygenation, and length of stay; safety indicators included any clinical adverse effects during and after intubation. Appropriate stratified and subgroup analyses were performed according to the purpose of intubation, gestational age, and whether the drug was administered via endotracheal tube. Result: A total of 101 neonates were included and divided into two groups based on the choice of tracheal tube: the conventional (n = 50) and new (n = 51) tracheal tube groups. There was no statistical difference between the two groups in terms of adverse effects during and after intubation (p > 0.05). In neonates who were mechanically ventilated without endotracheal surfactant therapy or newborns receiving InSurE technique followed by non-invasive ventilation, no significant differences were found between the two groups regarding any of the efficacy indicators (p > 0.05). However, for neonates on invasive mechanical ventilation, the new tracheal tube allowed for a significant reduction in the duration of mechanical ventilation (96.50[74.00, 144.00] vs. 121.00[96.00, 196.50] hours, p = 0.037) and total ventilation (205.71 ± 80.24 vs. 277.56 ± 117.84 h, p = 0.027), when used as a route for endotracheal drug delivery. Further analysis was performed according to gestational age for newborns requiring intratracheal surfactant administration during mechanical ventilation, and the data showed that for preterm infants, the new tracheal tube not only shortened the duration of mechanical ventilation (101.75 ± 39.72 vs. 155.50 ± 51.49 h, p = 0.026) and total ventilation (216.00 ± 81.60 vs. 351.50 ± 113.79 h, p = 0.010), but also demonstrated significant advantages in reducing the duration of oxygen therapy (9.75 ± 6.02 vs. 17.33 ± 8.43 days, p = 0.042); however, there was no statistical difference in efficacy outcomes between the two groups in full-term infants (p > 0.05). Conclusion: The efficacy and safety of this new tracheal tube are promising in neonates with RDS, especially those requiring surfactant administration via a tracheal tube during mechanical ventilation. Given the limitations of this study, however, the clinical feasibility of this catheter needs to be further confirmed in prospective randomized trials with larger sample sizes. Clinical Trial Registration: http://www.chictr.org.cn/showproj.aspx?proj=122073.

17.
Adv Sci (Weinh) ; 9(24): e2201614, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748191

RESUMO

The binding of plasma proteins to nanomedicines is widely considered detrimental to their delivery to tumors. Here, the design of OxPt/SN38 nanoparticle containing a hydrophilic oxaliplatin (OxPt) prodrug in a coordination polymer core and a hydrophobic cholesterol-conjugated SN38 prodrug on the lipid shell for active tumor targeting is reported. OxPt/SN38 hitchhikes on low-density lipoprotein (LDL) particles, concentrates in tumors via LDL receptor-mediated endocytosis, and selectively releases SN38 and OxPt in acidic, esterase-rich, and reducing tumor microenvironments, leading to 6.0- and 4.9-times higher accumulations in tumors over free drugs. By simultaneously crosslinking DNA and inhibiting topoisomerase I, OxPt/SN38 achieved 92-98% tumor growth inhibition in five colorectal cancer tumor models and prolonged mouse survival by 58-80 days compared to free drug controls in three human colorectal cancer tumor models without causing serious side effects. The study has uncovered a novel nanomedicine strategy to co-deliver combination chemotherapies to tumors via active targeting of the LDL receptor.


Assuntos
Neoplasias Colorretais , Nanopartículas , Pró-Fármacos , Receptores de LDL , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Lipoproteínas LDL/metabolismo , Camundongos , Oxaliplatina/administração & dosagem , Pró-Fármacos/farmacologia , Receptores de LDL/metabolismo , Microambiente Tumoral
18.
Nat Biomed Eng ; 6(2): 144-156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35190678

RESUMO

Checkpoint blockade elicits durable responses in immunogenic cancers, but it is largely ineffective in immunologically 'cold' tumours. Here we report the design, synthesis and performance of a bismuth-based nanoscale metal-organic framework that modulates the immunological and mechanical properties of the tumour microenvironment for enhanced radiotherapy-radiodynamic therapy. In mice with non-immunogenic prostate and pancreatic tumours irradiated with low X-ray doses, the intratumoural injection of the radiosensitizer mediated potent outcomes via the repolarization of immunosuppressive M2 macrophages into immunostimulatory M1 macrophages, the reduction of the concentration of intratumoural transforming growth factor beta (TGF-ß) and of collagen density, and the inactivation of cancer-associated fibroblasts. When intravenously injected in combination with checkpoint-blockade therapy, the radiosensitizer mediated the reversal of immunosuppression in primary and distant tumours via the systemic reduction of TGF-ß levels, which led to the downregulation of collagen expression, the stimulation of T-cell infiltration in the tumours and a robust abscopal effect. Nanoscale radiosensitizers that stimulate anti-tumour immunity and T-cell infiltration may enhance the therapeutic outcomes of checkpoint blockade in other tumour types.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Animais , Imunidade , Imunoterapia , Masculino , Estruturas Metalorgânicas/farmacologia , Camundongos , Microambiente Tumoral
19.
Nat Nanotechnol ; 17(12): 1322-1331, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302963

RESUMO

The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically 'cold' pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.


Assuntos
Nanopartículas , Neoplasias , Humanos , AMP Cíclico , Macrófagos Associados a Tumor , Zinco/farmacologia , Células Endoteliais , Proteínas de Membrana , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Monofosfato de Adenosina
20.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33496784

RESUMO

The antitumor effects of ionizing radiation (IR) are mediated in part through activation of innate and adaptive immunity. Here we report that gut microbiota influences tumor control following IR. Vancomycin decreased the abundance of butyrate-producing gut bacteria and enhanced antitumor responses to IR. Oral administration of Lachnospiraceae, a family of vancomycin-sensitive bacteria, was associated with increased systemic and intratumoral butyric acid levels and impaired the efficacy of IR in germ-free (GF) mice. Local butyrate inhibited STING-activated type I IFN expression in dendritic cells (DCs) through blockade of TBK1 and IRF3 phosphorylation, which abrogated IR-induced tumor-specific cytotoxic T cell immune responses without directly protecting tumor cells from radiation. Our findings demonstrate that the selective targeting of butyrate-producing microbiota may provide a novel therapeutic option to enhance tumor radiation sensitivity.


Assuntos
Antineoplásicos/farmacologia , Butiratos/farmacologia , Microbioma Gastrointestinal , Interferon Tipo I/metabolismo , Radiação Ionizante , Imunidade Adaptativa/efeitos dos fármacos , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA