Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(8): 2364-2376, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38683692

RESUMO

Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is considered one of the most destructive diseases affecting apples. The VQ-WRKY complex plays a crucial role in the response of plants to biotic stresses. However, our understanding of the defensive role of the VQ-WRKY complex on woody plants, particularly apples, under biotic stress, remains limited. In this study, we elucidated the molecular mechanisms underlying the defensive role of the apple MdVQ37-MdWRKY100 module in response to GLS infection. The overexpression of MdWRKY100 enhanced resistance to C. fructicola, whereas MdWRKY100 RNA interference in apple plants reduced resistance to C. fructicola by affecting salicylic acid (SA) content and the expression level of the CC-NBS-LRR resistance gene MdRPM1. DAP-seq, Y1H, EMSA, and RT-qPCR assays indicated that MdWRKY100 inhibited the expression of MdWRKY17, a positive regulatory factor gene of SA degradation, upregulated the expression of MdPAL1, a key enzyme gene of SA biosynthesis, and promoted MdRPM1 expression by directly binding to their promotors. Transient overexpression and silencing experiments showed that MdPAL1 and MdRPM1 positively regulated GLS resistance in apples. Furthermore, the overexpression of MdVQ37 increased the susceptibility to C. fructicola by reducing the SA content and expression level of MdRPM1. Additionally, MdVQ37 interacted with MdWRKY100, which repressed the transcriptional activity of MdWRKY100. In summary, these results revealed the molecular mechanism through which the apple MdVQ37-MdWRKY100 module responds to GLS infection by regulating SA content and MdRPM1 expression, providing novel insights into the involvement of the VQ-WRKY complex in plant pathogen defence responses.


Assuntos
Colletotrichum , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Malus/microbiologia , Malus/genética , Malus/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Colletotrichum/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas
2.
Bioorg Chem ; 149: 107503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823312

RESUMO

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Assuntos
L-Lactato Desidrogenase , Rutina , Rutina/química , Rutina/farmacologia , Rutina/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação por Computador , Antineoplásicos/química , Antineoplásicos/farmacologia
3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108407

RESUMO

AT-hook motif nuclear localization (AHL) proteins play essential roles in various plant biological processes. Yet, a comprehensive understanding of AHL transcription factors in walnut (Juglans regia L.) is missing. In this study, 37 AHL gene family members were first identified in the walnut genome. Based on the evolutionary analysis, JrAHL genes were grouped into two clades, and their expansion may occur due to segmental duplication. The stress-responsive nature and driving of developmental activities of JrAHL genes were revealed by cis-acting elements and transcriptomic data, respectively. Tissue-specific expression analysis showed that JrAHLs had a profound transcription in flower and shoot tip, JrAHL2 in particular. Subcellular localization showed that JrAHL2 is anchored to the nucleus. Overexpression of JrAHL2 in Arabidopsis adversely affected hypocotyl elongation and delayed flowering. Our study, for the first time, presented a detailed analysis of JrAHL genes in walnut and provided theoretical knowledge for future genetic breeding programs.


Assuntos
Arabidopsis , Juglans , Juglans/genética , Juglans/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Motivos AT-Hook/genética , Melhoramento Vegetal , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Nanotechnology ; 27(9): 095202, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26821871

RESUMO

In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.

5.
Adv Mater ; 36(9): e2311011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041490

RESUMO

Highly efficient near-infrared (NIR) luminescent nanomaterials are urgently required for portable mini or micro phosphors-converted light-emitting diodes (pc-LEDs). However, most existing NIR-emitting phosphors are generally restricted by their low photoluminescence (PL) quantum yield (QY) or large particle size. Herein, a kind of highly efficient NIR nanophosphors is developed based on copper indium selenide quantum dots (CISe QDs). The PL peak of these QDs can be exquisitely manipulated from 750 to 1150 nm by altering the stoichiometry of Cu/In and doping with Zn2+ . Their absolute PLQY can be significantly improved from 28.6% to 92.8% via coating a ZnSe shell. By combining the phosphors with a commercial blue chip, an NIR pc-LED is fabricated with remarkable photostability and a record-high radiant flux of 88.7 mW@350 mA among the Pb/Cd-free QDs-based NIR pc-LEDs. Particularly, such QDs-based nanophosphors acted as excellent luminescence converter for NIR micro-LEDs with microarray diameters below 5 µm, which significantly exceeds the resolutions of current commercial inkjet display pixels. The findings may open new avenues for the exploration of highly efficient NIR micro-LEDs in a variety of applications.

6.
Int J Biol Macromol ; 270(Pt 2): 132383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754667

RESUMO

Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.


Assuntos
Ésteres , Ligação Proteica , Albumina Sérica Humana , Humanos , Ésteres/química , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Simulação de Dinâmica Molecular , Termodinâmica , Simulação de Acoplamento Molecular , Ligação de Hidrogênio , Organofosfatos/química , Organofosfatos/metabolismo , Sítios de Ligação , Halogenação
7.
Chemosphere ; 362: 142675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908442

RESUMO

6PPD and its oxidation product, 6PPD-quinone have garnered widespread attention due to their adverse effects on aquatic ecosystems and human health, and are recognized as emerging pollutants. In this study, we investigated the interaction mechanism between 6PPD/6PPD-quinone and human serum albumin (HSA) through various experiments. Experimental findings reveal that the IC50 values of 6PPD-quinone and 6PPD against HEK293T cells were 11.78 and 40.04 µM, respectively. Additionally, the cytotoxicity of these compounds was regulated by HSA, displaying an inverse correlation with their binding affinity to HSA. Furthermore, 6PPD/6PPD-quinone can spontaneously insert into site I on HSA, forming a binary complex that induces changes in the secondary structure of HSA. However, their effects on the esterase-like activity of HSA exhibit a dichotomy. While 6PPD activates the esterase-like activity of HSA, 6PPD-quinone inhibits it. Molecular docking analyses reveal that both 6PPD and 6PPD-quinone interact with many amino acid residues on HSA, including TRP214, ARG222, ARG218, ALA291, PHE211. The π electrons on the benzene rings of 6PPD/6PPD-quinone play pivotal roles in maintaining the stability of complexes. Moreover, the stronger binding affinity observed between 6PPD and HSA compared to 6PPD-quinone, may be attributed to the larger negative surface potential of 6PPD.


Assuntos
Simulação de Acoplamento Molecular , Oxirredução , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Células HEK293 , Quinonas/química
8.
ACS Appl Mater Interfaces ; 16(7): 9544-9550, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346935

RESUMO

Quantum dot light-emitting diodes (QLEDs) have attracted increasing attention due to their excellent electroluminescent properties and compatibility with inkjet printing processes, which show great potential in applications of pixelated displays. However, the relatively low resolution of the inkjet printing technology limits its further development. In this paper, high-resolution QLEDs were successfully fabricated by electrohydrodynamic (EHD) printing. A pixelated quantum dot (QD) emission layer was formed by printing an insulating Teflon mesh on a spin-coated QD layer. The patterned QLEDs show a high resolution of 2540 pixels per inch (PPI), with a maximum external quantum efficiency (EQE) of 20.29% and brightness of 35816 cd/m2. To further demonstrate its potential in full-color display, the fabrication process for the QD layer was changed from spin-coating to EHD printing. The as-printed Teflon effectively blocked direct contact between the hole transport layer and the electron transport layer, thus preventing leakage currents. As a result, the device showed a resolution of 1692 PPI with a maximum EQE of 15.40%. To the best of our knowledge, these results represent the highest resolution and efficiency of pixelated QLEDs using inkjet printing or EHD printing, which demonstrates its huge potential in the application of high-resolution full-color displays.

9.
Plants (Basel) ; 12(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771674

RESUMO

Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr (serine/threonine) protein kinases that play very important roles in plant responses to biotic and abiotic stressors. However, the MAPK gene family in the important crop walnut (Juglans regia L.) has been less well studied compared with other species. We discovered 25 JrMAPK members in the Juglans genome in this study. The JrMAPK gene family was separated into four subfamilies based on phylogenetic analysis, and members of the same subgroup had similar motifs and exons/introns. A variety of cis-acting elements, mainly related to the light response, growth and development, stress response, and hormone responses, were detected in the JrMAPK gene promoters. Collinearity analysis showed that purification selection was the main driving force in JrMAPK gene evolution, and segmental and tandem duplications played key roles in the expansion of the JrMAPK gene family. The RNA-Seq (RNA Sequencing) results indicated that many of the JrMAPK genes were expressed in response to different levels of Colletotrichum gloeosporioides infection. JrMAPK1, JrMAPK3, JrMAPK4, JrMAPK5, JrMAPK6, JrMAPK7, JrMAPK9, JrMAPK11, JrMAPK12, JrMAPK13, JrMAPK17, JrMAPK19, JrMAPK20, and JrMAPK21 were upregulated at the transcriptional level in response to the drought stress treatment. The results of this study will help in further investigations of the evolutionary history and biological functions of the MAPK gene family in walnut.

10.
ACS Appl Mater Interfaces ; 15(1): 2104-2111, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541836

RESUMO

Information encryption is an important means to improve the security of anti-counterfeiting labels. At present, it is still challenging to realize an anti-counterfeiting label with multi-function, high security factor, low production cost, and easy detection and identification. Herein, using inkjet and screen printing technology, we construct a multi-dimensional and multi-level dynamic optical anti-counterfeiting label based on instantaneously luminescent quantum dots and long afterglow phosphor, whose color and luminous intensity varied in response to time. Self-assembled quantum dot patterns with intrinsic fingerprint information endow the label with physical unclonable functions (PUFs), and the information encryption level of the label is significantly improved in view of the information variation in the temporal dimension. Furthermore, the convolutional residual neural networks are used to decode the massive information of PUFs, enabling fast and accurate identification of the anti-counterfeit labels.

11.
ACS Appl Mater Interfaces ; 15(33): 40062-40069, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552832

RESUMO

Perovskite quantum dot light-emitting diodes (QLEDs) with high color purity and wide color gamut have good application prospects in the next generation of display technology. However, colloidal perovskite quantum dots (PQDs) may introduce a large number of defects during the film-forming process, which is not conducive to the luminous efficiency of the device. Meanwhile, the disordered film formation of PQDs will form interfacial defects and reduce the device performance. Here, we report an interface-induced crystallinity enhancement (IICE) strategy to increase the crystallinity of PQDs at the hole transport layer (HTL)/PQD interface. As a result, both the Br- vacancies in the PQD film and the interfacial defects were well passivated and the leakage current was also suppressed. We achieved QLEDs with a maximum external quantum efficiency (EQE) of 16.45% and current efficiency (CE) of 61.77 cd/A, showing improved performance to more than twice that of the control devices. The IICE strategy paves a new way to enhance the crystallinity of PQD films, so as to improve the performance of QLEDs for application in the future display field.

12.
Rep Prog Phys ; 75(1): 016502, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22790307

RESUMO

The theoretical description of the anomalous properties of the pseudogap phase in the underdoped region of the cuprate phase diagram lags behind the progress in spectroscopic and other experiments. A phenomenological ansatz, based on analogies to the approach to Mott localization at weak coupling in lower dimensional systems, has been proposed by Yang et al (2006 Phys. Rev. B 73 174501). This ansatz has had success in describing a range of experiments. The motivation underlying this ansatz is described and the comparisons with experiment are reviewed. Implications for a more microscopic theory are discussed together with the relation to theories that start directly from microscopic strongly coupled Hamiltonians.

13.
Light Sci Appl ; 11(1): 331, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418315

RESUMO

Interactive display devices integrating multiple functions have become a development trend of display technology. The excellent luminescence properties of perovskite quantum dots (PQDs) make it an ideal luminescent material for the next generation of wide-color gamut displays. Here we design and fabricate dual-function light-sensing/displaying light-emitting devices based on PQDs. The devices can display information as an output port, and simultaneously sense outside light signals as an input port and modulate the display information in a non-contact mode. The dual functions were attributed to the device designs: (1) the hole transport layer in the devices also acts as the light-sensing layer to absorb outside light signals; (2) the introduced hole trapping layer interface can trap holes originating from the light-sensing layer, and thus tune the charge transport properties and the light-emitting intensities. The sensing and display behavior of the device can be further modulated by light signals with different time and space information. This fusion of sensing and display functions has broad prospects in non-contact interactive screens and communication ports.

14.
ACS Appl Mater Interfaces ; 13(13): 15701-15708, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764737

RESUMO

Optical security labels play a significant role in protecting both our wealth and health. However, simultaneously meeting the requirements including low-cost fabrication, easy detection, and high-level security is still challenging for security labels. Here, we design an unclonable anti-counterfeiting system with triple-level security by using the inkjet printing technique, which can be authenticated by naked eyes, a portable microscope, and a fluorescence microscope. These labels are achieved by printing microscale quantum dot (QD) ink droplets on premodified substrates with random-distributed glass microspheres. Due to the unique capillary action induced by the glass microspheres, QDs in the ink droplets are deposited around the microspheres, forming microscale multicircular patterns. Multiple pinning of QDs at the three-phase contact lines appears during the evaporation of the droplet, resulting in the formation of a nanoscale labyrinthine pattern around the microspheres. The nanoscale labyrinth pattern and the microscale multicircular microsphere array, together with the printed macroscopic image, constitute a triple-level progressive anti-counterfeiting system. Moreover, the system is compatible with an artificial intelligence-based identification strategy that allows rapid identification and verification of the unclonable security labels.

15.
Phys Rev Lett ; 105(16): 167004, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230999

RESUMO

We study tunneling spectroscopy between a normal metal and an underdoped cuprate superconductor modeled by a phenomenological theory in which the pseudogap is a precursor to the undoped Mott insulator. In the low barrier tunneling limit, the spectra are enhanced by Andreev reflection only within a voltage region of the small superconducting energy gap. In the high barrier tunneling limit, the spectra show a large energy pseudogap associated with single particle tunneling. Our theory semiquantitatively describes the two gap behavior observed in tunneling experiments.

16.
ACS Appl Mater Interfaces ; 12(4): 4649-4658, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31916440

RESUMO

Highly efficient light-emitting electrochemical cells (LECs) have attracted tremendous interest because of their simple structures and low-cost fabrication processing, showing great potential for full-color displays and solid-state lighting. In this work, we rationally designed and synthesized two red-emitting cationic Ir(III) complexes, [Ir(tBuPBI)2(biq)]PF6 (R1) and [Ir(tBuPBI)2(qibi)]PF6 (R2), in which a tert-butyl-functionalized 1,2-diphenyl-1H-benzo[d]imidazole (PBI) unit and conjugated 2,2'-biquinoline (biq) and 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)quinolone (qibi) were employed as cyclometalated and ancillary ligands, respectively. The introduced tert-butyl group led to homogeneous and highly emissive thin films by increasing the solubility and suppressing the strong intermolecular interactions due to steric hindrance. Based on the abovementioned high-quality emissive layer, high-efficiency LECs were achieved. An efficient red-emitting LEC fabricated on a glass substrate achieved a current efficiency (ηC) of 7.18 cd/A and an external quantum efficiency (ηext) of 9.32%. By doping both complexes into a blue-green-emitting cationic Ir(III) complex, high-performance white LECs were also successfully fabricated with Commission International de L'Eclairage (CIE) coordinates of (0.39,0.39), a ηC of 17.43 cd/A, and a ηext of 8.92%. In addition, we also fabricated flexible red and white LECs with outstanding efficiencies and mechanical flexibilities. The ηC and ηext values of a flexible white LEC could be as high as 13.50 cd/A and 6.86%, respectively. The efficiency of the flexible device remained at approximately 95% of the initial value after 500 bends with a radius of curvature of 5 mm, demonstrating the great potential of these complexes for full-color displays and flexible optoelectronics.

17.
ACS Appl Mater Interfaces ; 12(35): 39649-39656, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32698573

RESUMO

Anticounterfeiting techniques based on physical unclonable functions exhibit great potential in security protection of extensive commodities from daily necessities to high-end products. Herein, we propose a facile strategy to fabricate an unclonable super micro fingerprint (SMFP) array by introducing in situ grown perovskite crystals for multilevel anticounterfeiting labels. The unclonable features are formed on the basis of the differential transportation of a microscale perovskite precursor droplet during the inkjet printing process, coupled with random crystallization and Ostwald ripening of perovskite crystals originating from their ion crystal property. Furthermore, the unclonable patterns can be readily tailored by tuning in situ crystallization conditions of the perovskite. Three-dimensional height information on the perovskite patterns are introduced into a security label and further transformed into structural color, significantly enhancing the capacity of anticounterfeiting labels. The SMFPs are characterized with tunable multilevel anticounterfeiting properties, including macroscale patterns, microscale unclonable pattern, fluorescent two-dimensional pattens, and colorful three-dimensional information.

18.
ACS Nano ; 13(2): 2042-2049, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30735353

RESUMO

Perovskite materials have exhibited promising potential for universal applications including backlighting, color conversion, and anticounterfeiting labels fabricated using solution processes. However, owing to the tendency of those materials to have uncontrollable morphologies and to form large crystals, they cannot be utilized in discontinuous microminiaturization, which is crucial for practical optoelectronic applications. In this research, combining the effects of adding polyvinylpyrrolidone (PVP), precisely controlling the inkjet printing technique, and using a postprocessing procedure, we were able to fabricate in situ crystallized perovskite-PVP nanocomposite microarrays with perfect morphologies. The viscosity of the perovskite precursor increased with the addition of PVP, eliminating the outward capillary flow that induces the coffee-ring effect. In addition, because of the presence of metallic bonds with the C═O groups in PVP and the spatial confinement of such a polymer, we were able to fabricate regulated CsPbBr3 nanocrystals capped with PVP and with a uniform size distribution. The as-printed patterns showed excellent homogeneity on a macroscale and high reproducibility on a microscale; furthermore, those patterns were invisible in the ambient environment, compatible with flexible substrates, and cost-efficient to produce, indicating that this technique holds promising potential for applications such as anticounterfeiting labels.

19.
ACS Appl Mater Interfaces ; 10(32): 27374-27380, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30058319

RESUMO

Perovskite quantum dots (PeQDs) have emerged as a new kind of nanomaterial in various applications, especially light-emitting diodes (LEDs). However, the synthesis of PeQDs is relatively complicated and the electron transport layer (ETL) is usually fabricated in a vacuum because of the dissolution of PeQDs films in organic solvents, which will increase the difficulty and cost in mass production. Here, a simple one-step "ultrasonic bath" treatment to synthesis PeQDs is adopted and applied into the PeQDs-LEDs. Meanwhile, an all-solution process is developed to fabricate PeQDs-LEDs based on the solvent engineering strategy. By using methyl acetate (MeOAc) as the solvent of ETL, the all-solution-processed PeQDs-LEDs exhibit bright luminance with the maximum current efficiency of 3.26 cd/A. This work is simple and easy to be scaled up, which will pave a new way to the low-cost all-solution processable PeQDs-LEDs.

20.
J Appl Biomater Funct Mater ; 15(Suppl. 1): e1-e6, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28430346

RESUMO

BACKGROUND: This study aims at proposing a facile method to prepare rGO/Fe3O4 composite film with adjusted magnetic properties and electronic conductivity. METHODS: Colloidal solution of graphene oxide (GO)/Fe3O4 nanoparticles (F-NPs) with a size in the range of 20-80 nm were prepared by a solution-blending method and heated step-by-step from room temperature to 60°C, 120°C and 160°C for 12 hours, respectively, to obtain a reduced graphene oxide (rGO)/F-NP composite film. The structure, morphology, components, magnetic properties and electrical conductivity of the composite films were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, superconducting quantum interference devices and 4-probe instrument. RESULTS: The results indicated that the F-NPs were uniformly distributed on the graphene film, and the composite exhibited good ferromagnetic properties and conductivity, which could be adjusted easily via different loadings of F-NPs. A high content of F-NPs (200 mg) led to a strong saturation magnetization of 63.6 emu·g-1, with a coercivity of about 104.9 oersted (Oe). Whereas a high conductivity of 6.5 S·m-1was obtained at low amounts of F-NPs (40 mg). Notably, rGO/Fe3O4 composite film fabricated by this simple method is widely used in various fields including magnetoelectronics, electrochemical energy conversion and storage, and magnetic nanodevices and others. CONCLUSIONS: A graphene-based film deposited by Fe3O4 nanoparticles with controllable loadings has been fabricated by a step-by-step heating treatment of GO/Fe3O4 colloidal solution.


Assuntos
Grafite/síntese química , Nanocompostos , Óxidos/síntese química , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA