Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 300(8): 107605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059492

RESUMO

TNIP1 has been increasingly recognized as a security check to finely adjust the rate of mitophagy by disrupting the recycling of the Unc-51-like kinase complex during autophagosome formation. Through tank-binding kinase 1-mediated phosphorylation of the TNIP1 FIP200 interacting region (FIR) motif, the binding affinity of TNIP1 for FIP200, a component of the Unc-51-like kinase complex, is enhanced, allowing TNIP1 to outcompete autophagy receptors. Consequently, FIP200 is released from the autophagosome, facilitating further autophagosome expansion. However, the molecular basis by which FIP200 utilizes its claw domain to distinguish the phosphorylation status of residues in the TNIP1 FIR motif for recognition is not well understood. Here, we elucidated multiple crystal structures of the complex formed by the FIP200 claw domain and various phosphorylated TNIP1 FIR peptides. Structural and isothermal titration calorimetry analyses identified the crucial residues in the FIP200 claw domain responsible for the specific recognition of phosphorylated TNIP1 FIR peptides. Additionally, utilizing structural comparison and molecular dynamics simulation data, we demonstrated that the C-terminal tail of TNIP1 peptide affected its binding to the FIP200 claw domain. Moreover, the phosphorylation of TNIP1 Ser123 enabled the peptide to effectively compete with the peptide p-CCPG1 (the FIR motif of the autophagy receptor CCPG1) for binding with the FIP200 claw domain. Overall, our work provides a comprehensive understanding of the specific recognition of phosphorylated TNIP1 by the FIP200 claw domain, marking an initial step toward fully understanding the molecular mechanism underlying the TNIP1-dependent inhibition of mitophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Mitofagia , Ligação Proteica , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Domínios Proteicos
2.
Nucleic Acids Res ; 47(6): 3142-3157, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649456

RESUMO

In Drosophila, dosage compensation globally upregulates the expression of genes located on male single X-chromosome. Maleless (MLE) helicase plays an essential role to incorporate the roX lncRNA into the dosage compensation complex (MSL-DCC), and such function is essentially dependent on its dsRNA-binding domains (dsRBDs). Here, we report a 2.90Å crystal structure of tandem dsRBDs of MLE in complex with a 55mer stem-loop of roX2 (R2H1). MLE dsRBDs bind to R2H1 cooperatively and interact with two successive minor grooves and a major groove of R2H1, respectively. The recognition of R2H1 by MLE dsRBDs involves both shape- and sequence-specificity. Moreover, dsRBD2 displays a stronger RNA affinity than dsRBD1, and mutations of key residues in either MLE dsRBD remarkably reduce their affinities for roX2 both in vitro and in vivo. In Drosophila, the structure-based mle mutations generated using the CRISPR/Cas9 system, are partially male-lethal and indicate the inter-regulation among the components of the MSL-DCC at multiple levels. Hence, our research provides structural insights into the interactions between MLE dsRBDs and R2H1 and facilitates a deeper understanding of the mechanism by which MLE tandem dsRBDs play an indispensable role in specific recognition of roX and the assembly of the MSL-DCC in Drosophila dosage compensation.


Assuntos
Proteínas Cromossômicas não Histona/química , DNA Helicases/química , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/química , RNA de Cadeia Dupla/genética , Fatores de Transcrição/química , Animais , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , RNA de Cadeia Dupla/química , Fatores de Transcrição/genética , Cromossomo X/genética
3.
Nucleic Acids Res ; 45(16): 9625-9639, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934467

RESUMO

In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.


Assuntos
Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/genética , Pareamento de Bases , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fator sigma/genética
4.
J Biol Chem ; 292(39): 16221-16234, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808060

RESUMO

MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans, and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype (HLA-A2) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme.


Assuntos
Antígeno HLA-A2/metabolismo , Modelos Moleculares , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Cristalografia por Raios X , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Ligação de Hidrogênio , Cinética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Domínios RING Finger , RNA/química , RNA/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
5.
Methods Mol Biol ; 2741: 383-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217664

RESUMO

Small non-coding RNAs (sRNAs) play vital roles in gene expression regulation and RNA interference. To comprehend their molecular mechanisms and develop therapeutic approaches, determining the accurate three-dimensional structure of sRNAs is crucial. Although nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for structural biology, obtaining high-resolution structures of sRNAs using NMR data alone can be challenging. In such cases, structural modeling can provide additional details about RNA structures. In this context, we present a protocol for the structural modeling of sRNA using the SimRNA method based on sparse NMR constraints. To demonstrate the efficacy of our method, we provide selected examples of NMR spectra and RNA structures, specifically for the second stem-loop of DsrA sRNA.


Assuntos
Pequeno RNA não Traduzido , RNA , RNA/genética , RNA/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Pequeno RNA não Traduzido/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
Chemosphere ; 339: 139606, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499800

RESUMO

Excessive levels of formaldehyde (FA) represent serious health risks. Aiming at the detection of formaldehyde content, this paper proposes a self-assembly method of proportional nanoprobes. Spherical nanoparticles (NPs) were prepared by one-step condensation reaction between rhodamine B (RhB) and chitosan (CS). After CS was modified by RhB, the linear structure changed and self-assembled under the action of "hydrophilic/hydrophobic" to form a core-shell structure with a cavity structure. The hydrophobic small molecule probe N-Butyl-4-Hydrazo-1,8-Naphacticimide (NBHN) spontaneously entered into the hydrophobic cavity to form spherical particles Chitosan-Rhodamine B@N-Butyl-4-Hydrazo-1,8-Naphacticimide (CS-RhB@NBHN) with a size of about 60 nm. The hydroxyl groups on CS enrich formaldehyde through charge interaction, and promote the reaction of formaldehyde with NBHN, so that the probe can detect formaldehyde at a lower concentration (detection limit 87 nmol·L-1). The self-assembled CS-RhB@NBHN nanoparticles significantly increased the response speed of NBHN (from 30 min to 10 min). After the reaction of NBHN with formaldehyde, the PET effect is released, the fluorescence transition from red to yellow of CS-RhB@NBHN, and the visual fluorescence response effect to formaldehyde is significantly improved. With the help of smartphone color recognition software, we converted the color of the probe solution into RGB values to realize the quantitative and visual detection of formaldehyde. In addition, CS-RhB@NBHN was used for the detection of FA in leather and air.


Assuntos
Quitosana , Nanopartículas , Quitosana/química , Nanopartículas/química , Corantes , Formaldeído
7.
PLoS One ; 14(9): e0222938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557220

RESUMO

3' downstream inhibitory stem plays a crucial role in locking rpoS mRNA 5' untranslated region in a self-inhibitory state. Here, we used optical tweezers to study the unfolding/refolding of rpoS inhibitory stem in the absence and presence of Mg2+. We found adding Mg2+ decreased the free energy of the RNA junction without re-arranging its secondary structure, through confirming that this RNA formed a canonical RNA three-way junction. We suspected increased free energy might change the relative orientation of different stems of rpoS and confirmed this by small angle X-ray scattering. Such changed conformation may improve Hfq-bridged annealing between sRNA and rpoS RNA inhibitory stem. We established a convenient route to analyze the changes of RNA conformation and folding dynamics by combining optical tweezers with X-ray scattering methods. This route can be easily applied in the studies of other RNA structure and ligand-RNA.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Imagem Molecular/métodos , Conformação de Ácido Nucleico , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica , Magnésio/metabolismo , Pinças Ópticas , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA