RESUMO
A solid-phase microextraction (SPME) Arrow and high-performance liquid chromatography-UV detector (HPLC-UV, detection at 225 nm) based method was developed for the selective determination of nine alkylphenols (APs) in milk. The functionalized mesoporous UiO-66 (4-meso-UiO-66) was utilized as the new coating material, which was synthesized by post-modification of pore-expanded UiO-66-NH2 by an esterification reaction with 4-pentylbenzoic acid. It was fully characterized by X-ray photoelectron spectroscopy (XPS), fourier transformation infrared spectrometry, nitrogen sorption-desorption test, scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The characterization results showed the ester groups and benzene rings were introduced into the 4-meso-UiO-66, and the mesoporous structure was predominant in the 4-meso-UiO-66. The extraction mechanism of 4-meso-UiO-66 to APs is the synergistic effect of Zr-O electrostatic interaction and the size exclusion effect resulting from XPS, selectivity test, and nitrogen sorption-desorption test. The electrospinning technique was utilized to fabricate the 4-meso-UiO-66 coated SPME Arrow and polyacrylonitrile (PAN) was used as the adhesive. The mass rate of 4-meso-UiO-66 to PAN and the electrospinning time were evaluated. The extraction and desorption parameters were also studied. The linear range of this method was 0.2-1000 µg L-1 with a coefficient of determination greater than 0.9989 under the optimal conditions. The detection limits were 0.05-1 µg L-1, the inter-day and intra-day precision (RSD) were 2.8-11.5%, and the recovery was 83.6%-112%. The reusability study showed that the extraction performance of this new SPME Arrow could be maintained after 80 adsorption-desorption cycles. This method showed excellent applicability for the selective determination of APs in milk.
RESUMO
To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.
Assuntos
Cápsulas , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Epimedium , Flavonas , Ratos Sprague-Dawley , Acidente Vascular Cerebral , Animais , Ratos , Epimedium/química , Masculino , Flavonas/administração & dosagem , Flavonas/farmacologia , Flavonas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Humanos , Peptídeos beta-Amiloides/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cognição/efeitos dos fármacosRESUMO
BACKGROUND: Chinese dragon's blood, the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen., is widely used to treat cardiovascular and cerebrovascular diseases in China. Longxuetongluo Capsule (LTC) is a total phenolic compound extracted from Chinese dragon's blood, currently used in treating ischemic stroke. Myocardial injury can be aggravated after reperfusion of ischemic myocardium, which is called myocardial ischemia-reperfusion injury (MIRI), and the mechanism of MIRI is complex. However, the exact effect and mechanism of LTC on MIRI are still unclear. We explore the effect of LTC on alleviating MIRI based on mitochondrial dysfunction and oxidative stress. AIM OF THE STUDY: To explore the cardioprotective mechanism of LTC against MIRI. MATERIALS AND METHODS: A rat MIRI model was constructed through ligation of the left anterior descending coronary artery, and LTC was given continuously for 28 days before surgery. The H9c2 cardiomyocyte injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R), and LTC was given 24 h before OGD. Myocardial ischemia areas were detected with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Cardiac histopathological changes were detected with hematoxylin-eosin (HE) staining. And biochemical indexes were detected with serum biochemical kit. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining and flow cytometry were used to detect apoptosis. Fluorescent probes were used to observe reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), Ca2+and other indexes. MitoTracker staining and immunofluorescence were used to observe the morphology of mitochondria and translocation of dynamin-related protein 1 (Drp1). Finally, immunohistochemistry and Western blotting were used to examine the expression of proteins related to apoptosis, mitochondrial fission and fusion and oxidative stress. RESULTS: LTC could ameliorate cardiac pathological changes, decrease myocardial infarct area and the content or level of relevant serum cardiac enzymes, indicating that LTC could alleviate MIRI. Meanwhile, LTC could inhibit cardiomyocyte apoptosis via regulating apoptosis-related protein expression, and it could restore mitochondrial morphology, maintain ΔΨm, inhibit mitochondrial ROS generation and Ca2+ accumulation, increase the expression of mitochondrial fusion protein 2 (Mfn2), decrease the level of phosphorylation dynamin-related protein 1 (p-Drp1), and regulate ATP synthesis, thereby significantly ameliorating mitochondrial dysfunction. Moreover, LTC significantly reduced the expression of NADPH oxidase 2 (NOX2), NADPH oxidase 4 (NOX4) and neutrophil cytosolic factor 2 (NOXA2/p67phox), and reduced ROS production. CONCLUSION: The study demonstrated that LTC could inhibit MIRI induced cardiomyocyte apoptosis by inhibiting ROS generation and mitochondrial dysfunction, and these fundings suggested that LTC can be used to alleviate MIRI, which provides a potential therapeutic approach for future treatment of MIRI.
Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Masculino , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Linhagem Celular , Dinaminas/metabolismoRESUMO
The Rayleigh wave excited by the electromagnetic acoustic transducer (EMAT) is an effective selection for surface plane stress measurement. However, the propagation velocity of Rayleigh wave on the metal surface is easily affected by the original rolling process. Besides, the direction of the plane stress state is usually unknown, which means that the propagation velocity cannot be expressed linearly by the stress. As a result, the traditional measurement model of one transmitter and one receiver can only realize the decouple of plane stress components by rotating method, which not only brings position error but also low measurement efficiency. Therefore, this paper focuses on a novel Rayleigh wave-EMAT for plane stress ultrasonic measurement. Firstly, the Rayleigh wave measurement model is established based on the acoustoelastic equation and displacement expression. Furthermore, an array Rayleigh wave-EMATintegrating three transmitters and three receivers is designed. Finally, the typical plane stress state of 5052 aluminum alloy plate after friction stir welding (FSW) is measured. The experimental results show good agreement compared with the hole-drilling method, which verifies the effectiveness of proposed method and designed EMAT.