Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408508, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030794

RESUMO

Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e- ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS2/In2.77S4 heterostructure was synthesized as a precatalyst and through a series of comprehensive ex-situ and in-situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)3) could be evolved from the initial NiS2/In2.77S4 via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO6]-[InO6] units at the interfaces of NiOOH/In(OH)3, facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e- ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH)3 exhibited exceptional performance, achieving H2O2 selectivity of >90% across the wide potential window (up to 0.4 V) with a peak selectivity of >99%. Notably, within the flow cell, a current density exceeding 200 mA cm-2 was sustained for over 20 h, together with an impressive Faradaic efficiency of approximately 90% and a hydrogen peroxide production rate surpassing 4 mol g-1 h-1.

2.
Small ; 19(16): e2206679, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651137

RESUMO

The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA