Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 18(3): e3000688, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32218572

RESUMO

Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fármacos Antiobesidade/uso terapêutico , Cumarínicos/uso terapêutico , Obesidade/prevenção & controle , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Reação de Maillard , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Propiltiouracila/toxicidade , Termogênese , Tri-Iodotironina/antagonistas & inibidores , Tri-Iodotironina/metabolismo , Aumento de Peso/efeitos dos fármacos
2.
FASEB J ; 34(5): 6688-6702, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212192

RESUMO

Mitochondrial aconitase (Aco2) catalyzes the conversion of citrate to isocitrate in the TCA cycle, which produces NADH and FADH2, driving synthesis of ATP through OXPHOS. In this study, to explore the relationship between adipogenesis and mitochondrial energy metabolism, we hypothesize that Aco2 may play a key role in the lipid synthesis. Here, we show that overexpression of Aco2 in 3T3-L1 cells significantly increased lipogenesis and adipogenesis, accompanied by elevated mitochondrial biogenesis and ATP production. However, when ATP is depleted by rotenone, an inhibitor of the respiratory chain, the promotive role of Aco2 in adipogenesis is abolished. In contrast to Aco2 overexpression, deficiency of Aco2 markedly reduced lipogenesis and adipogenesis, along with the decreased mitochondrial biogenesis and ATP production. Supplementation of isocitrate efficiently rescued the inhibitory effect of Aco2 deficiency. Similarly, the restorative effect of isocitrate was abolished in the presence of rotenone. Together, these results show that Aco2 sustains normal adipogenesis through mediating ATP production, revealing a potential mechanistic link between TCA cycle enzyme and lipid synthesis. Our work suggest that regulation of adipose tissue mitochondria function may be a potential way for combating abnormal adipogenesis related diseases such as obesity and lipodystrophy.


Assuntos
Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Adipogenia , Tecido Adiposo/citologia , Mitocôndrias/enzimologia , Células 3T3-L1 , Aconitato Hidratase/genética , Tecido Adiposo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Anim Biotechnol ; 31(2): 164-173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30929567

RESUMO

Serine protease inhibitor protein 3 (serpin peptidase inhibitor, clade A, member 3, SERPINA3) is a member of the serpin superfamily, probably related to the yield and quality of muscle. This study focuses on the relationship between SERPINA3 gene polymorphism and growth traits in beef cattle. The study first uses sequencing pooled DNA samples (Pool-Seq), PCR-RFLP and Tetra-primer ARMS-PCR techniques to determine the genetic polymorphisms of SERPINA3 in 765 beef cattle. Then, the polymorphic loci were correlated with the growth characters of cattle. Five SNPs (SNP1:A-648G, SNP2:T6496A, SNP3:G2495A, SNP4:T2595A, SNP5:A2615G) were found, located in the promoter, introns 5 and SNP 3, 4, 5 were in exons 2, respectively. The observed He was from 0.44 to 0.5, Ne were approaching 2 (1.78 to 2.00). The maximum and minimum PIC (polymorphism information content) values were 0.37 and 0.34, respectively. The association analysis results showed that the SNPs had a significant height in the chest girth and body length. (p < 0.05 or p < 0.01). This will provide important information for the rapid breeding of Chinese yellow cattle and the establishment of a molecular genetic marker database.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica/fisiologia , Serpinas/metabolismo , Animais , Bovinos/crescimento & desenvolvimento , DNA/genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Serpinas/genética
4.
J Agric Food Chem ; 68(13): 3976-3985, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32178518

RESUMO

Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.


Assuntos
Adipócitos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , PPAR gama/metabolismo , Estilbenos/administração & dosagem , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Resistência à Insulina , Masculino , Camundongos , PPAR gama/genética
5.
Cells ; 9(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023857

RESUMO

The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 µM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Janus Quinase 2/metabolismo , Lactonas/farmacologia , Mitose/efeitos dos fármacos , Forbóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/genética , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Clonais , Dieta Hiperlipídica , Regulação para Baixo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/genética , Hiperglicemia/patologia , Lactonas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/patologia , Forbóis/química , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/biossíntese
6.
Gene ; 680: 99-104, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30099021

RESUMO

Copy number variation (CNV) related to complex traits, such as disease and quantitative phenotype, is considered an important and wealthy source of genetic and phenotypic diversity. It suggests that the copy number variation of function gene maybe leads to the phenotypic changes. Kupple like factor 3 (KLF3) gene is a vital transcription factor associated with the growth and development of muscle and adipose tissue. It has been mapped in a CNV region by animal genome re-sequencing. In this study, we detected the distribution diversity of KLF3 gene copy numbers in six Chinese cattle breeds (QC, NY, XN, PN, QDM and JX) and associated the phenotypic traits with it. Then, we analyzed the KLF3 gene transcription expression level in different tissues of Jiaxian (JX) cattle. Furthermore, we detected mRNA expression level of muscle and fat tissues of Jiaxian cattle (JX), Angus × Jiaxian (AJ). The results showed that the copy number in CNV loss was more frequent in QC than others. And we revealed a positive effect of KLF3 CNV on growth traits, such as body mass and heart girth (P < 0.05). In a word, we ascertained the significance between CNVs of KLF3 gene and growth traits in different cattle breeds, and our data indicates that the CNVs of KLF3 gene may as a marker for the future molecular breeding of Chinese beef cattle.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Variações do Número de Cópias de DNA , Estudos de Associação Genética/métodos , Fatores de Transcrição Kruppel-Like/genética , Músculo Esquelético/crescimento & desenvolvimento , Animais , Peso Corporal , Bovinos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Característica Quantitativa Herdável , Análise de Sequência de DNA
7.
World J Gastroenterol ; 6(3): 371-373, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11819600

RESUMO

AIM:To study the relationship between insulin A chain regions and insulin biological activities, we designed a series of insulin analogues with changes at A21, A12-18 of C terminal helical region and A8-10 located in the region of A6-A11 intra-chain disulphide bond.METHODS:Insulin A-chain analogues were prepared by stepwise Fmoc solid phase manual synthesis and then combined with natural B-chain of porcine insulin to yield corresponding insulin analogues. Their biological activities were tested by receptor binding, mouse convulsion and immunological assay.RESULTS: A21Ala Ins retains 70.3% receptor binding capacity and 60% in vivo biological activity.DesA13-14, A21Ala Ins and DesA12-13-14-15, A21Ala Ins still have definite biological activity,7.9% and 4.0% receptor binding,and 6.2% and 3.3% in vivo biological activity respectively. A15Asn, A17Pro, A21Ala Ins maintains 10.4% receptor binding and 10% in vivo biological activity. A8His, A9Arg, A10Pro, A21Ala Ins, A8His, A9Lys, A10Pro, A21Ala Ins and A8His, A9Lys, A10Arg, A21Ala Ins have 51.9%, 44.3% and 32.1% receptor binding respectively,50%, 40% and 30% in vivo biological activity respectively, and 28.8%, 29.6% and 15.4% immunological activity respectively.CONCLUSION:A21Asn can be replaced by simple amino acid residues.The A chains with gradually damaged structural integrity in A12-18 helical region and the demolition of the A12-18 helical region by the substitution of Pro and Asn for A17Glu and A15Gln respectively can combine with the B chain and the combination products show definite biological activity, the helical structure of A12-18 is essential for biological activities of insulin. A8-10 is not much concerned with biological activities, but is much more important antigenically in binding to its antibodies, these results may help us design a new type of insulin analogue molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA